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Gene expression programming is a genotype/phenotype system that evolves computer
programs encoded in linear chromosomes of fixed length. The interplay between geno-
type (chromosomes) and phenotype (expression trees) is made possible by the structural
and functional organization of the linear chromosomes. This organization allows the un-
constrained operation of important genetic operators such as mutation, transposition, and
recombination. Although simple, the genotype/phenotype system of gene expression pro-
gramming can provide some insights into natural evolutionary processes. In this work the
question of the initial diversity in evolving populations of computer programs is addressed
by analyzing populations undergoing either mutation or recombination. The results pre-
sented here show that populations undergoing mutation recover practically undisturbed
from evolutionary bottlenecks whereas populations undergoing recombination alone de-
pend considerably on the size of the founder population and are unable to evolve effi-
ciently if subjected to really tight bottlenecks.

Introduction

Everybody agrees that, by and large, evolution relies on genetic variation coupled with
some kind of selection and, in fact, all evolutionary algorithms explore these fundamen-
tal processes. However, there is no agreement concerning the best way to create genetic
variation, with researchers divided between mutation and recombination [1, 4, 6, 7, 8,
9, 12]. This facper seis extremely revealing, suggesting that existing artificial systems
are fundamentally different from one another. Particularly interesting is that the
evolvability of the system will depend heavily on the kind of genetic operator used to
create variation. And the size and kind of initial populations is closely related to this
guestion.

In all evolutionary algorithms, an evolutionary epoch or run starts with an initial
population. Initial populations, though, are generated in many different ways, and the
performance and the costs (in terms of CPU time) of different algorithms depend greatly
on the characteristics of initial populations. The simplest and less time consuming popu-
lation is the totally random initial population. However, few evolutionary algorithms are
able to use this kind of initial population due not only to structural constraints but also



to the kind of genetic operators available to create genetic modification. The initial
populations of gene expression programming (GEP) are totally random and consist of
the linear genomes of the individuals of the population [4].

Gene expression programming is a genotype/phenotype system that evolves compu-
ter programs of different sizes and shapes (expression trees) encoded in linear chromo-
somes of fixed length. The genetic encoding used in GEP allows a totally unconstrained
interplay between chromosomes and expression trees. This interplay brought about a tre-
mendous increase in performance allowing, consequently, the undertaking of detailed,
much needed analysis of fundamental evolutionary processes.

One such analysis is the importance of the initial diversity in evolution. Ernst Mayr
hypothesized that, in nature, small groups of founder individuals can give rise to a new
species [10, 11]. This is only possible, however, due to the variety of genetic operators
that continually introduce genetic modification in the population. The initial diversity
guestion is extremely important in artificial evolutionary systems where founder events
are created each time a run starts. And the efficiency of the system will depend, among
other things, on how the system deals with evolutionary bottlenecks. Indeed, the evolu-
tionary strategies followed by different artificial evolutionary systems depend greatly
on the nature of their respective initial populations.

In GEP, due to the existence of a truly functional and autonomous genome, the im-
plementation of different genetic operators is extremely simplified and Ferreira [4]
introduces seven. Furthermore, due to the high efficiency of the algorithm, the per-
formance and the roles of all these operators can be easily and rigorously analyzed
revealing the existence of two fundamental types of evolutionary dynamics: non-ho-
mogenizing dynamics found in populations undergoing mutation or other non-con-
servative operators, and homogenizing dynamics found in populations undergoing re-
combination alone [5]. Therefore, systems with different evolutionary behaviors can
be easily simulated in GEP. In this work, the importance of the initial diversity is
analyzed in two different systems. The first evolves under mutation and has a non-
homogenizing dynamics characteristic of an efficient adaptation. The second evolves
under recombination and has a homogenizing dynamics characteristic of poorly evolv-
ing systems.

1. Genetic Algorithms

All genetic algorithms use populations of individuals, select individuals according to
fitness, and introduce genetic variation using one or more genetic operators. Structur-
ally, genetic algorithms can be subdivided in three fundamental groups: (1) Genetic al-
gorithms with individuals consisting of linear chromosomes of fixed length devoid of
complex expression. In these systems, replicators (chromosomes) survive by virtue of
their own properties. The algorithm invented by Holland [8] belongs to this group, and
is known as genetic algorithm or GA; (2) Genetic algorithms with individuals consist-
ing of ramified structures of different sizes and shapes and, therefore, capable of as-



suming a richer number of functionalities. In these systems, replicators (ramified struc-
tures) also survive by virtue of their own properties. The algorithm invented by Cramer
[2] and later developed by Koza [9] belongs to this group and is known as genetic pro-
gramming or GP; and (3) Genetic algorithms with individuals encoded as linear chro-
mosomes of fixed length which are afterwards expressed as ramified structures of dif-
ferent sizes and shapes. In these systems, replicators (chromosomes) survive by virtue
of causal effects on the phenotype (ramified structures). The algorithm invented by my-
self [4] belongs to this group and is known as gene expression programming or GEP.

It is worth emphasizing that GEP shares with GP the same kind of ramified structure,
meaning that both systems can be used in the same problem domains. However, due to
the crossing of the phenotype threshold [3], gene expression programming is bound to
be much more successful, allowing the exploration of new frontiers in evolutionary com-
putation. Below are briefly highlighted some of the differences between GP and GEP.

1.1. Genetic Programming

As simple replicators, the ramified structures of GP are tied up in their own complex-
ity: on the one hand, bigger, more complex structures are more difficult to handle dur-
ing reproduction and, on the other, the introduction of genetic variation can only be done
at the tree level and, therefore, must be done carefully so that valid structures are cre-
ated. For instance, the tree-specific recombination is practically the only source of ge-
netic variation used in GP for it allows the exchanging of sub-trees and, therefore, al-
ways produces valid structures. But the implementation of other operators, like the
equivalent of the natural high-performing point mutation, is unproductive as most mu-
tations would have resulted in syntactically incorrect structures.

Obviously, the implementation of other operators such as transposition or inversion
raises similar difficulties. In fact, Koza [9] describes two other tree-specific operators,
permutation and mutation, but they are seldom used in GP.

1.2. Gene Expression Programming

The phenotype of GEP individuals consists of the same kind of ramified structures used
in genetic programming. However, these complex entities are encoded in simpler, lin-
ear structures of fixed length — the chromosomes. Thus, there are two main players in
GEP: the chromosomes and the ramified structures or expression trees (ETs), the latter
being the expression of the genetic information encoded in the former. As in nature, the
process of information decoding is called translation. And this translation implies obvi-
ously a kind of code and a set of rules. The genetic code is very simple: a one-to-one
relationship between the symbols of the chromosome and the functions or terminals they
represent. The rules are also very simple: they determine the spatial organization of the
functions and terminals in the ETs and the type of interaction between sub-ETs in
multigenic systems.



In GEP there are therefore two languages: the language of the genes and the language
of ETs. However, thanks to the simple rules that determine the structure of ETs and their
interactions, it is possible to infer immediately the phenotype given the sequence of a
gene, andsice versaThis bilingual and unequivocal system is calkatva language.

The details of this new language are given in [4].

2. Artificial Evolutionary Systems and the Founder Effect

The question of the initial diversity is pertinent in artificial evolutionary systems for two
main reasons. First, the random generation of viable individuals in some complex prob-
lems can be a rare event and, in those cases, it would be advantageous if the evolution-
ary process could get started from one or a few founder individuals; whether this is pos-
sible or not, will depend on the modification mechanisms available to the system. And,
second, because of this, the kind of mechanism used to create genetic variation becomes
of paramount importance. If genetic variation is created by non-homogenizing opera-
tors such as point mutation, then populations will be able to adapt and evolve. How-
ever, if genetic variation is created by homogenizing operators (recombination), then
evolution is either altogether halted when only one founder individual is available or
seriously compromised when the number of founder individuals is excessively small.

The importance of the initial diversity in evolution was stressed by E. Mayr in what
he called founder effect speciation [10, 11]. This process may be thought of as the estab-
lishment of a new population due to a founder event initiated by genetic drift and fol-
lowed by natural selection. An extreme case of a founder event is the colonization of a
previously uninhabited area by a single pregnant female. In nature, besides recombina-
tion, other genetic operators are used to create modification and populations that pass
through a bottleneck are capable of adaptation, sometimes even originating new species.

Similarly, in artificial evolutionary systems, the capability of founder populations to
evolve depends greatly on the kind of mechanism used to create genetic modification.
Indeed, if homogenizing operators are the only source of genetic modification,
populations will either be unable to evolve efficiently or not at all in the extreme case
of only one founder individual.

In this work, different populations of computer programs will be used to analyze the
founder effect in evolution. One kind of population uses point mutation as the only
source of genetic modification and the other uses only recombination.

3. Setting the System

In order to quantify accurately how different populations respond to the number of ac-
tual founders in initial populations, a simple, exactly solved problem must be chosen.
This problem must allow the comparison of dissimilarly performing genetic operators,
such as the high-performing point mutation and the less powerful recombination. In ad-
dition, the populations chosen to make the comparisons must follow different evolution-



ary dynamics so that the results discussed here could be useful not only theoretically
but also for understanding the evolutionary strategies chosen by different artificial evo-
lutionary systems.

3.1. General Settings

To analyze the founder effect on populations undergoing either mutation or recombina-
tion, the following test sequence was chosen:

a, =4n* +3n®+2n® +n
wheren consists of the nonnegative integers. This sequence was chosen for three rea-
sons. First, it can be exactly solved by the algorithm and therefore provide an accurate
measure of performance in terms of success rate. Second, it requires relatively small
populations and relatively short evolutionary times, making the task feasible. And third,
it provides sufficient resolution to allow the comparison of dissimilarly performing op-
erators such as mutation and recombination.

In all the experiments, the first 10 positive integeend their corresponding term
were used as fitness cases; the fitness function was based on the relative error with a
selection range of 20% and maximum precision (0% error), giving maximum fitness
f .= 200 [4]; the selection was made by roulette-wheel sampling coupled with simple
elitism; population size® of 50 individuals and evolutionary tim& = 100 genera-
tions were used; the success rate of each experiment was evaluated over 100 independ-
ent runs; F = {+, -, *, /} and the terminal set T consisted only of the independent vari-
able which was represented &ygiving T = {a}; and six-genic chromosomes of length
78 (head length = 6) linked by addition were used.

In gene expression programming mutation is by far the single most important genetic
operator and populations undergoing mutation display non-homogenizing dynamics [5],
i.e., the best fitness is always considerably above average fithess and average fitness
displays a pronounced oscillatory pattern. Furthermore, mutation is the only operator
capable of reaching the performance peak and, for each experiment, this peak can be
found. Figure 1 shows the performance peak for populations evolving using the param-
eters given above. In this case, maximum performance is reached around a mutation rate
p,, = 0.05. Therefore, this value will be used to study the importance of the initial diver-
sity in non-homogenizing populations.

As for recombination, this operator is the less powerful of all GEP operators and
populations undergoing recombination alone display homogenizing dynamics [5], i.e.,
with time, the best fithess becomes equal to average fitness and populations lose all ge-
netic diversity. Furthermore, it has been shown that the three kinds of GEP recombina-
tion (two-point, one-point and gene recombination) perform better at maximum rates of
1.0, being two-point recombination the most powerful of the three recombinational op-
erators and gene recombination the less powerful [5]. However, for the particular set-
tings used in this analysis, when used separately, the three kinds of recombination per-
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Figure 1. Determining the performance summit using mutation alone.

form so poorly that the three recombinational operators were combined together so that
the performance of the algorithm increased a little (Table 1, column 5). As shown in the
fifth column of Table 1, in this experiment, the recombination rates of the three
recombinational operators are identical and equal to 0.8. Note that the success rate in-
creases slightly comparatively to the individual performances obtained for the recombi-
nation operators working separately. So, the dependence of success rate on the number
of actual founders in populations undergoing recombination will be analyzed using the
general settings shown in the fifth column of Table 1. As will next be shown, the kind
of evolutionary dynamics exhibited by these populations is, nonetheless, of the same
kind as the homogenizing dynamics characteristic of populations undergoing only one
type of recombination at a time.

3.2. Choosing Non-homogenizing and Homogenizing Populations to Study the
Founder Effect

In GEP, populations undergoing mutation are characterized by non-homogenizing dy-
namics where a considerable gap between average and best fitness is maintained
throughout the evolutionary history of a population [5]. Furthermore, in this kind of dy-
namics, the plot for average fitness shows a pronounced oscillatory pattern which re-
veals the extent of the modifications taking place in the genome of the individuals. Fig-
ure 2 shows such a dynamics obtained for a successful run of the experiment summa-
rized in the first column of Table 1.



Table 1. Success rates and parameters for a non-homogenizing system undergoing mutation (Mut)
and homogenizing systems undergoing two-point recombination (Rec2P), one-point recombination
(ReclP), gene recombination (RecG), and three different kinds of recombination (RecMix).

Mut Rec2P ReclP RecG RecMix
Number of runs 100 100 100 100 100
Number of generations 100 100 100 100 100
Population size 50 50 50 50 50
Number of fitness cases 10 10 10 10 10
Head length 6 6 6 6 6
Number of genes 6 6 6 6 6
Chromosome length 78 78 78 78 78
Mutation rate 0.05 - - - --
Two-point recombination rate - 1.0 - - 0.8
One-point recombination rate - - 1.0 - 0.8
Gene recombination rate - - - 1.0 0.8
Selection range 20% 20% 20% 20% 20%
Precision 0% 0% 0% 0% 0%
Success rate 96% 0.04% 0.03% 0.0% 0.13%

On the other hand, populations undergoing recombination alone have homogenizing
dynamics [5]. In these populations, the gap between average and best fitness is consid-
erably smaller and, with time, tends to disappear completely. Obviously, when this hap-
pens all the individuals in the population have the same genetic makeup and populations
become stagnant and incapable of adaptation. Also important is the fact that the plot for
average fitness does not show such dramatic oscillations as observed in populations with

non-homogenizing dynamics. Note also that, in these systems, populations evolve very
inefficiently (see Table 1).

e Best fithess
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Figure 2. Evolutionary dynamics characteristic of non-homogenizing systems. In this case, the

population evolved under a mutation rate of 0.05. Note the oscillatory pattern on average fithess
and the wide gap between best and average fitness.



The evolutionary dynamics presented in Figure 3 was obtained for populations sub-
jected to three different kinds of recombination simultaneously (Table 1, column 5). Not-
withstanding, these populations exhibit the same homogenizing effect described for
populations undergoing only one type of recombination at a time. This further reinforces
the hypothesis that recombination is conservative and, therefore, plays a major role at
maintaining the status quo [5]. Note that, in this particular case, by generation 54 the
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Figure 3. Evolutionary dynamics characteristic of homogenizing populations undergoing recombi-
nation. The rates of the three recombination operators used (two-point, one-point and gene recom-
bination) were identical and equal to 0.8. Note the absence of dramatic oscillations on average fit-
ness and that average fitness increases consistently until the complete loss of genetic diversity.

plot for average fitness meets the plot for best fitness and all individuals become ge-
netically identical. This might be seen as a good thing especially if all the individuals
would have become equal and perfect. Recall, however, that in complex real-world prob-
lems, as in nature, perfection is always a step further ahead. The disadvantages of such
an evolutionary strategy, however, become evident when average fithess reaches best
fitness before a perfect or good solution is found. Figure 4 shows such a case where the
population stabilized on a mediocre solution. In this case, after generation 86 adapta-
tion becomes impossible because all individuals share the same genetic makeup. Indeed,
the small success rates typical of populations undergoing recombination alone (see Ta-
ble 1, for instance) indicate that, most of the times, homogenizing populations converge
before finding a good solution because they became irrevocably stuck in some local
point, not necessarily optimal.

It is worth noticing that in the experiments summarized in Table 1, totally random
initial populations were used and, therefore, the number of viable individuals in those
initial populations was not controlled. In the next section it is shown how the number of
viable individuals in initial populations can be rigorously controlled in order to analyze
the founder effect in artificial evolutionary systems.
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Figure 4. Convergence on a mediocre solution in homogenizing populations undergoing
recombination alone. The parameters are exactly the same as in Figure 3.

4. Analyzing the Founder Effect in Simulated Evolutionary Processes

The question of the initial diversity is one of interest in artificial evolutionary systems
as a considerable amount of computational resources could go into guaranteeing the ad-
equate initial diversity for populations to evolve efficiently. Here, two different systems
will be compared: one that relies on mutation and has a non-homogenizing evolution-
ary dynamics and another that relies exclusively on crossover and, therefore, has a ho-
mogenizing dynamics.

For this analysis, a smaller, totally random “initial” population (founder population)
composed of a certain number of viable individuals is created. That is, the run only starts
when all the members of the founder population are viable, that is, have positive fit-
ness. These founder individuals are afterwards selected and reproduced, leaving as many
descendants as the actual population Bize

As shown in Figure 5, for non-homogenizing populations there is no correlation be-
tween success rate and the initial diversity. Indeed, due to the constant introduction of ge-
netic modification in the population, in non-homogenizing populations, after a certain time,
the founder effect is completely erased and populations evolve, as usual, efficiently.

However, a very different situation happens in populations where crossover is the only
source of genetic diversity and the evolutionary dynamics are homogenizing in effect.
In these cases, there is a strong correlation between success rate and initial diversity.
Note that populations evolve poorly under recombination, being practically incapable
of adaptation in the cases where only 2-5 founder individuals are used (obviously, for
cases with only one founder, homogenizing populations are altogether incapable of ad-
aptation). It isvorth emphasizing that, in these systems, even when the size of the founder
population is equal t®, the success rate is significantly smaller than in populations un-
dergoing mutation, with only one viable individual in the founder population.

Also worth considering is that the computational resources required to guarantee the
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Figure 5. Dependence of success rate on the size of the founder population in non-homogenizing
populations undergoing mutation alone (mutation rate equal to 0.05) and homogenizing populations
undergoing recombination alone (two-point, one-point and gene recombination rates all equal to 0.8).

creation of large founder populations are very expensive. Thus, systems such as GEP
capable of evolving efficiently with minimal initial diversity are most advantageous.
Furthermore, for some complex problems like, for instance, the discovery of cellular
automata rules for the density-classification task [4], it is very difficult to generate ran-
domly a viable individual, even a mediocre one, to start the run. In those cases, systems
like GEP can use this individual as founder and continue from there, whereas systems
relying on recombination alone will be stuck for a long time before they gather momen-
tum. In GEP, due to the varied set of genetic operators available such as the high-per-
forming point mutation and transposition, there is no need for large founder populations
because as long as one viable individual is randomly generated in the initial population
the evolutionary process can get started.

5. Conclusions

The question of the initial diversity in artificial evolutionary systems was addressed us-
ing gene expression programming. Due to the varied set of genetic operators and the
high efficiency of the algorithm, it was possible to compare dissimilarly performing sys-
tems such as systems evolving under mutation alone and systems undergoing only re-
combination. As most existing artificial evolutionary systems rely either on mutation or
recombination, this analysis can help understand the different evolutionary strategies
followed by each system.

The results obtained in this work show that, on the one hand, systems using the high-
performing mutation operator are not only more efficient but also capable of adaptation
under extreme evolutionary bottlenecks. In fact, these systems show no correlation be-
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tween the size of the founder population and success rate. Consequently, in the course
of a run, this kind of system is never caught in evolutionary cul-de-sacs and, therefore,
evolves without end.

On the other hand, systems relying on recombination alone not only perform poorly
but also are unable to adapt and evolve when populations pass through a really tight
bottleneck. Consequently, these systems not only are useless whenever only one viable
individual is available to start an evolutionary epoch but also frequently become irrevo-
cably stuck at evolutionary cul-de-sacs the system itself creates. Because of this, it is
mandatory that these systems guarantee a high level of genetic diversity in initial
populations for one thing, and for another, the population sizes in these systems must
be huge in order to prevent evolutionary cul-de-sacs from happening. Obviously, these
systems are highly expensive and impractical.
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