
GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 1

GENE EXPRESSION PROGRAMMING AND THE
EVOLUTION OF COMPUTER PROGRAMS

CÂNDIDA FERREIRA

Gepsoft, 73 Elmtree Drive,
Bristol BS13 8NA, UK
candidaf@gepsoft.com

In Leandro N. de Castro and Fernando J. Von Zuben, eds., Recent Developments in
Biologically Inspired Computing, pages 82-103, Idea Group Publishing, 2004.

In this chapter an artificial problem solver inspired in natural genotype/phenotype sys-
tems – gene expression programming – is presented. As an introduction, the fundamental
differences between gene expression programming and its predecessors, genetic algorithms
and genetic programming, are briefly summarized so that the evolutionary advantages of
gene expression programming are better understood. The work proceeds with a detailed
description of the architecture of the main players of this new algorithm (chromosomes
and expression trees), focusing mainly on the interactions between them and how the
simple yet revolutionary structure of the chromosomes allows the efficient, unconstrained
exploration of the search space. And finally, the chapter closes with an advanced applica-
tion in which gene expression programming is used to evolve computer programs for
diagnosing breast cancer.

1. Evolutionary Algorithms in Problem Solving

The way nature solves problems and creates complexity has inspired scientists to create
artificial systems that learn by themselves how to solve a particular problem. The first at-
tempts were done in the 1950s by Friedberg (Friedberg 1958; Friedberg et al. 1959), but
ever since highly sophisticated systems have been developed that apply Darwin's ideas of
natural evolution to the artificial world of computers and modeling. Of particular interest
to this work are the genetic algorithms (GAs) and the genetic programming (GP) technique
as they are the predecessors of gene expression programming (GEP), the most recent de-
velopment in evolutionary computation and the theme of this chapter. A brief introduction
to these three techniques is given below.

1.1. Genetic Algorithms

Genetic algorithms were invented by John Holland in the 1960s and they also apply bio-
logical evolution theory to computer systems (Holland 1975). Like all evolutionary com-
puter systems, GAs are an oversimplification of biological evolution. In this case, solutions
to a problem are usually encoded in strings of 0’s and 1’s (chromosomes), and populations

2 | C FERREIRA

of such strings (individuals or candidate solutions) are used in order to evolve a good solu-
tion to a particular problem. From generation to generation candidate solutions are repro-
duced with modification and selected according to fitness. Modification in the original GA
was introduced by the genetic operators of mutation, crossover, and inversion.

It is worth pointing out that GAs’ individuals consist of naked chromosomes or, in other
words, GAs’ individuals are simple replicators. And like all simple replicators, the chro-
mosomes of genetic algorithms function simultaneously as genotype and phenotype: they
are both the object of selection and the guardians of the genetic information that must be
replicated and passed on with modification to the next generation. Consequently, the whole
structure of the replicator determines the functionality and, therefore, the fitness of the in-
dividual. For instance, in such systems it would not be possible to use only a particular
region of the replicator as a solution to a problem: the whole replicator is always the solu-
tion: nothing more, nothing less.

1.2. Genetic Programming

Genetic programming, invented by Cramer in 1985 (Cramer 1985) and further developed
by Koza (1992), solves the problem of fixed length solutions through the use of nonlinear
structures (parse trees) with different sizes and shapes. The alphabet used to create these
structures is also more varied, creating a richer, more versatile system of representation.
Notwithstanding, the created individuals also lack a simple, autonomous genome. Like the
linear chromosomes of genetic algorithms, the nonlinear structures of GP are also cursed
with the dual role of genotype/phenotype.

The parse trees of genetic programming resemble protein molecules in their use of a
richer alphabet and in their complex and unique hierarchical representation. Indeed, parse
trees are capable of exhibiting a great variety of functionalities. The problem with these
complex replicators is that their reproduction with modification is highly constrained in
evolutionary terms because the modifications must take place on the parse tree itself and,
consequently, only a limited range of modification is possible. Indeed, special kinds of ge-
netic operators were developed that operate at the tree level, modifying or exchanging par-
ticular branches between trees.

Although at first sight this might appear advantageous, it greatly limits this technique
(we all know the limits of grafting and pruning in nature). Consider for instance crossover,
the most used and often the only search operator used in genetic programming. In this case,
selected branches are exchanged between two parent trees to create offspring (Figure 1).
The idea behind its implementation was to exchange smaller, mathematically concise blocks
in order to evolve more complex, hierarchical solutions composed of smaller building blocks.

The mutation operator in GP is also very different from natural point mutation. This
operator selects a node in the parse tree and replaces the branch underneath by a new ran-
domly generated branch (Figure 2). Notice that the overall shape of the tree is not greatly
changed by this kind of mutation, especially if lower nodes are preferentially chosen as
mutation targets.

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 3

Permutation is the third operator used in genetic programming and the most conserva-
tive of the three. During permutation, the arguments of a randomly chosen function are
randomly permuted (Figure 3). In this case the overall shape of the tree remains unchanged.

In summary, in genetic programming the operators resemble more of a conscious math-
ematician than the blind way of nature. But in adaptive systems the blind way of nature is
much more efficient and systems such as GP are highly constrained. For instance, the im-
plementation of other operators in genetic programming such as the simple yet high-per-
forming point mutation (Ferreira 2002c) is unproductive as most mutations result in syn-
tactically incorrect structures (Figure 4). Obviously, the implementation of other operators
such as transposition or inversion raises similar difficulties and the search space in GP re-
mains vastly unexplored.

Although Koza described these three operators as the basic GP operators, crossover is
practically the only genetic operator used in most GP applications (Koza 1992). Conse-
quently, no new material is introduced in the genetic pool of GP populations. Not surpris-
ingly, huge populations of parse trees must be used with the aim of creating all the neces-

Figure 1. Tree crossover in genetic programming. The arrows indicate the crossover points.

ba

a

a

b

b

b

b

sqrt

ba

sqrt

sqrt

sqrt

b a

a

a a a

a

b

b

b

b

sqrt

sqrt

sqrt

sqrt

b

a a

4 | C FERREIRA

Figure 4. Illustration of a hypothetical event of point mutation in genetic programming.
The arrow indicates the mutation point. Note that the daughter tree is an invalid structure.

a a

b b

b b b

b

sqrt

Figure 2. Tree mutation in genetic programming. The arrow indicates the mutation point. The
new branch randomly generated by the mutation operator in the daughter tree is shown in gray.

a b

a b

sqrt

sqrt

a

b

a b

sqrt

Figure 3. Permutation in genetic programming. The arrow indicates the permutation point.
Note that the arguments of the permuted function traded places in the daughter tree.

a aa ab b

b

sqrt

b

sqrt

sary building blocks with the inception of the initial population in order to guarantee the
discovery of a good solution only by moving the initial building blocks around.

Finally, due to the dual function of the parse trees (genotype and phenotype), genetic
programming is incapable of a simple, rudimentary expression: in all cases, the entire parse
tree is the solution.

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 5

1.3. Gene Expression Programming

Gene expression programming was invented by myself in 1999 (Ferreira 2001), and incor-
porates both the simple, linear chromosomes of fixed length similar to the ones used in
genetic algorithms and the ramified structures of different sizes and shapes similar to the
parse trees of genetic programming. This is equivalent to say that in gene expression pro-
gramming the genotype and phenotype are finally separated and the system can now ben-
efit from all the advantages this brings about.

Thus, the phenotype of GEP consists of the same kind of ramified structure used in ge-
netic programming. But the ramified structures created by GEP (expression trees) are the
expression of a totally autonomous genome. Therefore, with gene expression programming,
the second evolutionary threshold – the phenotype threshold – is crossed (Dawkins 1995).
This means that, during reproduction, only the genome (slightly modified) is passed on to
the next generation and we no longer need to replicate and mutate rather cumbersome struc-
tures: all the modifications take place in a simple linear structure which only later will grow
into an expression tree.

The fundamental steps of gene expression programming are schematically represented
in Figure 5. The process begins with the random generation of the chromosomes of a cer-
tain number of individuals (the initial population). Then these chromosomes are expressed
and the fitness of each individual is evaluated against a set of fitness cases (also called
selection environment). The individuals are then selected according to their fitness (their
performance in that particular environment) to reproduce with modification, leaving prog-
eny with new traits. These new individuals are, in their turn, subjected to the same devel-
opmental process: expression of the genomes, confrontation of the selection environment,
selection, and reproduction with modification. The process is repeated for a certain number
of generations or until a good solution has been found.

The pivotal insight of gene expression programming consisted in the invention of chro-
mosomes capable of representing any parse tree. For that purpose a new language – Karva
language – was created in order to read and express the information encoded in the chro-
mosomes. The details of this new language are given in the next section.

Furthermore, the structure of the chromosomes was designed to allow the creation of
multiple genes, each coding for a smaller program or sub-expression tree. It is worth em-
phasizing that gene expression programming is the only genetic algorithm with multiple
genes. Indeed, the creation of more complex individuals composed of multiple genes is
extremely simplified in truly functional genotype/phenotype systems. In fact, after their in-
ception, these systems seem to catapult themselves into higher levels of complexity such as
the multicellular systems, where different cells put together different consortiums of genes
(Ferreira 2002a).

The basis for all this novelty resides on the revolutionary structure of GEP genes. The
simple but plastic structure of these genes not only allows the encoding of any conceivable
program but also allows their efficient evolution. Due to this versatile structural organiza-
tion, a very powerful set of genetic operators can be easily implemented and used to search

6 | C FERREIRA

Figure 5. The flowchart of gene expression programming.

Create Chromosomes of Initial Population

End

Express Chromosomes

Execute Each Program

Evaluate Fitness

Replication

Prepare New Chromosomes of Next Generation

Keep Best Program

Select Programs

Genetic Modification

Iterate or Terminate?

Terminate

Iterate

R
eproduction

very efficiently the solution space. As in nature, the search operators of gene expression
programming always produce valid structures and therefore are remarkably suited to creat-
ing genetic diversity.

2. The Architecture of GEP Individuals

We know already that the main players in gene expression programming are the chromo-
somes and the expression trees (ETs), being the latter the expression of the genetic infor-
mation encoded in the former. As in nature, the process of information decoding is called
translation. And this translation implies obviously a kind of code and a set of rules. The
genetic code is very simple: a one-to-one relationship between the symbols of the chromo-
some and the nodes they represent in the trees. The rules are also very simple: they deter-
mine the spatial organization of nodes in the expression trees and the type of interaction
between sub-ETs. Therefore, there are two languages in GEP: the language of the genes

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 7

and the language of expression trees and, thanks to the simple rules that determine the struc-
ture of ETs and their interactions, we will see that it is possible to infer immediately the
phenotype given the sequence of a gene, and vice versa. This means that we can choose to
have a very complex program represented by its compact genome without losing in mean-
ing. This unequivocal bilingual notation is called Karva language. Its details are explained
in the remainder of this section.

2.1. Open Reading Frames and Genes

The structural organization of GEP genes is better understood in terms of open reading
frames (ORFs). In biology, an ORF or coding sequence of a gene begins with the start
codon, continues with the amino acid codons, and ends at a termination codon. However, a
gene is more than the respective ORF, with sequences upstream of the start codon and se-
quences downstream of the stop codon. Although in GEP the start site is always the first
position of a gene, the termination point does not always coincide with the last position of
a gene. Consequently, it is common for GEP genes to have non-coding regions downstream
of the termination point. (For now we will not consider these non-coding regions, as they
do not interfere with expression.)

Consider, for example, the algebraic expression:

 (1)

It can also be represented as a diagram or ET:

a

d

b c

Q

where “Q” represents the square root function.
This kind of diagram representation is in fact the phenotype of GEP chromosomes. And

the genotype can be easily inferred from the phenotype as follows:

01234567
-/daQ+bc (2)

which is the straightforward reading of the expression tree from left to right and from top
to bottom (exactly as we read a page of text). The expression (2) is an open reading frame,

d
cb

a −
+

8 | C FERREIRA

starting at “-” (position 0) and terminating at “c” (position 7). These open reading frames
were named K-expressions from Karva language.

Consider another open reading frame, the following K-expression:

012345678901
/Q**a*+baaba (3)

Its expression as an ET is also very simple and straightforward. In order to express the
ORF correctly, we must follow the rules governing the spatial distribution of functions and
terminals. First, the start of a gene corresponds to the root of the expression tree which is
placed in the topmost line. Second, in the next line, below each function, are placed as
many branch nodes as there are arguments to that function. Third, from left to right, the
nodes are filled consecutively with the next elements of the K-expression. Fourth, the proc-
ess is repeated until a line containing only terminals is formed. In this case, the following
expression tree is formed:

b

b

a

aa

a

Q

which mathematically corresponds to
3

)(

a

bab + .

Looking at the structure of GEP ORFs only, it is difficult or even impossible to see the
advantages of such a representation, except perhaps for its simplicity and elegance. How-
ever, when open reading frames are analyzed in the context of a gene, the advantages of
this representation become obvious. As previously stated, GEP chromosomes have fixed
length, and they are composed of one or more genes of equal length. Consequently, the
length of a gene is also fixed. Thus, in gene expression programming, what varies is not the
length of genes which is constant, but the length of the ORF. Indeed, the length of an open
reading frame may be equal to or less than the length of the gene. In the first case, the
termination point coincides with the end of the gene, and in the latter, the termination point
is somewhere upstream of the end of the gene.

What is the function of these non-coding regions of GEP genes? We will see that they
are the essence of gene expression programming and evolvability, for they allow the modi-
fication of the genome using several genetic operators without restrictions, always produc-
ing syntactically correct programs. Thus, in GEP, the fundamental property of genotype/

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 9

phenotype systems – syntactic closure – is intrinsic, allowing the totally unconstrained re-
structuring of the genotype and, consequently, an efficient evolution.

In the next section we are going to analyze the structural organization of GEP genes in
order to understand how they invariably code for syntactically correct programs and why
they allow an unconstrained application of virtually any genetic operator.

2.2. Structural Organization of Genes

The genes of gene expression programming are composed of a head and a tail. The head
contains symbols that represent both functions and terminals, whereas the tail contains only
terminals. For each problem, the length of the head h is chosen, whereas the length of the
tail t is a function of h and the number of arguments n of the function with more arguments
(also called maximum arity) and is evaluated by the equation:

 t = h (n-1) + 1 (4)

Consider a gene for which the set of functions F = {Q, *, /, -, +} and the set of terminals
T = {a, b}. In this case n = 2; if we chose an h = 11, then t = 11 (2 - 1) + 1 = 12; thus, the
length of the gene g is 11 + 12 = 23. One such gene is shown below (the tail is shown in
bold):

01234567890123456789012
+-ba+Qb*ba/ abaaaabbaabb (5)

It codes for the following expression tree:

b

b

a

Q

ab

or the equivalent mathematical expression ()baa − . In this case, the open reading frame

ends at position 9, whereas the gene ends at position 22.
Suppose now a mutation occurred at position 3, changing the “a” into “*”. Then the

following gene is obtained:

10 | C FERREIRA

01234567890123456789012
+-b * +Qb*ba/abaaaabbaabb (6)

And its expression gives:

b

b

a

Q b

a

b a

which mathematically corresponds to the expression ()1−ab . In this case, the termina-

tion point shifts four positions to the right (position 13), enlarging and changing signifi-
cantly the daughter tree.

Obviously the opposite also might happen, and the daughter tree might shrink. For ex-
ample, consider again gene (5) above, and suppose a mutation occurred at position 1, chang-
ing the “-” into “a”:

01234567890123456789012
+aba+Qb*ba/abaaaabbaabb (7)

Its expression results in the following ET:

ba

In this case, the ORF ends at position 2, shortening the original ET in seven nodes.
So, despite their fixed length, each gene has the potential to code for expression trees of

different sizes and shapes, where the simplest is composed of only one node (when the first
element of a gene is a terminal) and the largest is composed of as many nodes as the length
of the gene (when all the elements of the head are functions with maximum arity).

It is evident from the examples above, that any modification made in the genome, no
matter how profound, always results in a structurally correct program. Obviously, the struc-
tural organization of genes must be preserved, always maintaining the boundaries between
head and tail. We will be able to fully appreciate the plasticity of GEP chromosomes in the
section Genetic Operators and Evolution where the mechanisms and effects of different
genetic operators will be thoroughly analyzed.

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 11

2.3. Multigenic Chromosomes

The chromosomes of gene expression programming are usually composed of more than
one gene of equal length. For each problem or run, the number of genes, as well as the
length of the head, are a priori chosen. Each gene codes for a sub-ET and the sub-ETs
interact with one another forming a more complex multi-subunit expression tree.

Consider, for example, the following chromosome with length 39, composed of three
genes, each with length 13 (the tails are shown in bold):

012345678901201234567890120123456789012
Qb+/ bbbabab -a+Qb abbababa /ba-/* bbaaaaa (8)

It has three open reading frames, and each ORF codes for a sub-ET (Figure 6). The start of
each ORF is always given by position 0; the end of each ORF, though, is only evident upon
construction of the corresponding sub-ET. As shown in Figure 6, the first open reading
frame ends at position 9; the second ORF ends at position 5; and the last ORF ends at
position 2. Thus, GEP chromosomes contain several ORFs of different sizes, each ORF
coding for a structurally and functionally unique sub-ET. Depending on the problem at hand,
these sub-ETs may be selected individually depending on their respective outputs, or they
may form a more complex, multi-subunit expression tree and be selected as a whole. In
these multi-subunit structures, individual sub-ETs interact with one another by a particular
kind of posttranslational interaction or linking. For instance, algebraic sub-ETs can be linked
by addition or multiplication whereas Boolean sub-ETs can be linked by OR, AND or IF.

The linking of three sub-ETs by addition is illustrated in Figure 6, c. Note that the final
ET could be linearly encoded as the following K-expression:

012345678901234567890
++/*-baQba++Qb*/abbba (9)

However, the use of multigenic chromosomes is more appropriate to evolve solutions to
complex problems, for they permit the modular construction of complex, hierarchical struc-
tures, where each gene codes for a smaller and simpler building block. These smaller building
blocks are separated from each other, and thus can evolve independently. Not surprisingly,
these multigenic systems are much more efficient than unigenic ones (Ferreira 2001, 2002a).

3. Genetic Operators and Evolution

Genetic operators are the core of all evolutionary algorithms, and two of them are common
to all evolutionary systems: selection and replication. Indeed, all artificial systems use a
scheme to select individuals more or less according to fitness. Some schemes are totally
deterministic, whereas others include a touch of unpredictability. Gene expression program-
ming uses one of the latter, namely, a fitness proportionate roulette-wheel scheme (see e.g.
Goldberg 1989) coupled with the cloning of the best individual (simple elitism) as it mim-
ics nature very faithfully and produces very good results.

12 | C FERREIRA

Figure 6. Expression of GEP genes as sub-ETs. a) A three-genic chromosome with the tails shown in
bold. Position zero marks the start of each gene. b) The sub-ETs codified by each gene, which corre-

spond respectively to abbb /2 + , ()baa +− , and ab / . c) The result of posttranlational linking with

addition, which obviously corresponds to () abbaaabbb //2 ++−++ . The linking functions are

shown in gray.

012345678901201234567890120123456789012
Qb+/ -a+Qba /ba-/*bbbabab bbababa bbaaaaa

a.

b.

c.

a

a

bQ

ab

/

b

a

Q

b b b

/

b a

a

bQ

ab

/

a

Q

b b b

/

Sub-ET1 Sub-ET3Sub-ET2

ET

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 13

Thus, according to fitness and the luck of the draw, individuals are selected to be repli-
cated. Although crucial, replication is the most uninteresting operator. During replication,
chromosomes are dully copied and passed on to the next generation. The fitter the indi-
vidual the higher the probability of passing on its genes to the next generation. So, during
replication, the genomes of the selected individuals are copied every time the roulette picks
them up. And the roulette is spun as many times as there are individuals in the population
so that the same population size is maintained from generation to generation.

Although the center of the storm, by themselves, selection and replication, do nothing in
terms of adaptation. In fact, by themselves they can only cause genetic drift, making
populations less and less diverse with time until all the individuals are exactly the same.
So, the corner stone of all evolutionary systems is genetic modification. And different algo-
rithms create this modification differently. For instance, genetic algorithms normally use
mutation and recombination; genetic programming uses almost exclusively tree recombi-
nation; and gene expression programming uses mutation, inversion, transposition, and re-
combination.

With the exception of GP, which is severely constrained in terms of tools of genetic
modification, in both GAs and GEP it is possible to implement easily a vast set of search
operators because the search operators act on simple linear chromosomes. In fact, a varied
set of search operators was implemented in gene expression programming in order to shed
some light on the dynamics of evolutionary systems, but what is important is to provide for
the necessary degree of genetic diversification in order to allow an efficient evolution. Nev-
ertheless, mutation (by far the most efficient operator) by itself is capable of wonders. How-
ever, the interplay of mutation with other operators not only allows an efficient evolution
but also allows the duplication of genes and their subsequent differentiation, the creation
of small repetitive sequences, and so forth, making things really interesting.

In the remainder of this section we will see how the search operators work and how their
implementation in gene expression programming is a child’s play due to the simple fact
that the genome is completely autonomous and consequently is not tied up in the structural
complexities of the computer programs encoded within.

3.1. Mutation

In gene expression programming, mutations can occur anywhere in the chromosome. How-
ever, the structural organization of chromosomes must remain intact, that is, in the heads of
genes any symbol can change into another (function or terminal), whereas in the tails ter-
minals can only change into terminals. This way, the structural organization of chromo-
somes is preserved, and all the new individuals produced by mutation are structurally cor-
rect programs.

Consider the following three-genic chromosome:

14 | C FERREIRA

012345678901201234567890120123456789012
/bQa* * bbbbaba- - +*Q-abbbabaQ* a+**baabbba

Suppose a mutation changed the “*” at position 5 in gene 1 to “a”; the “-” at position 1 in
gene 2 to “Q”; and the “a” at position 2 in gene 3 to “*”. In this case the following chromo-
some is obtained:

012345678901201234567890120123456789012
/bQa* abbbbaba- Q+*Q-abbbabaQ* * +**baabbba

Note that if a function is mutated into a terminal or vice versa, or a function of one
argument is mutated into a function of two arguments or vice versa, the expression tree is
usually modified drastically. Note also that the mutation on gene 1 is an example of a neu-
tral mutation, as it occurred in the non-coding region of the gene. It is worth emphasizing
that the non-coding regions of GEP chromosomes are ideal places for the accumulation of
neutral mutations which are known to play an important role in evolution (Kimura 1983;
Ferreira 2002b).

In summary, in gene expression programming there are no constraints both in the kind
of mutation and the number of mutations in a chromosome as, in all cases, the newly cre-
ated individuals are syntactically correct programs.

3.2. Inversion

We know already that the modifications bound to make a big impact occur usually in the
heads of genes. Therefore, the inversion operator was restricted to these regions. Here any
sequence might be randomly selected and inverted.

In gene expression programming, the inversion operator randomly chooses the chromo-
some, the gene to be modified, and the start and termination points of the sequence to be
inverted. It is worth pointing out that this is the first time the inversion operator is described
in gene expression programming.

Consider, for instance, the following three-genic chromosome:

012345678901201234567890120123456789012
/+ aQ*aaabaaab/aa/baaababab-Q++aQababaab

Suppose that the sequence “aQ*” in gene 1 (positions 2-4) was picked up to be inverted.
Then the following chromosome is formed:

012345678901201234567890120123456789012
/+ *Qaaaabaaab/aa/baaababab-Q++aQababaab

It is worth pointing out that, since the inversion operator was restricted to the heads of
genes, there is no danger of a function ending up in the tails and, consequently, all the new
individuals created by inversion are syntactically correct programs.

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 15

3.3. Transposition and Insertion Sequence Elements

The transposable elements (also called transposons) of gene expression programming are
fragments of the genome that can be activated and then jump to another place in the chro-
mosome. In GEP there are three kinds of transposable elements: (1) short fragments with a
function or terminal in the first position that transpose to the head of genes except the root
(insertion sequence elements or IS elements); (2) short fragments with a function in the
first position that transpose to the start position of genes (root IS elements or RIS elements);
(3) and entire genes that transpose to the beginning of chromosomes.

3.3.1. IS Transposition

Any sequence in the genome might become an IS element and, therefore, these elements
are randomly selected throughout the chromosome. A copy of the transposon is made and
inserted at any position in the head of a gene, except the first position. The transposition
operator randomly chooses the chromosome, the start and termination points of the IS ele-
ment, and the target site. It is worth pointing out that the implementation of this operator as
described here, slightly differs from the original implementation (Ferreira 2001) where the
length of the IS elements was a priori chosen.

Consider the following three-genic chromosome:

012345678901201234567890120123456789012
+*+-Q/baaaabbQ+aa*abaaaaba*+- a/- aabbbba

Suppose that the sequence “a/-” in gene 3 (positions 3-5) was picked up as an IS element to
be then inserted between positions 1-2 in gene 2, obtaining:

012345678901201234567890120123456789012
+*+-Q/baaaabbQ+ a/- abaaaaba*+- a/- aabbbba

Note that, in this case, a perfect copy of the transposon appears at the site of insertion.
Note also that a sequence with as many symbols as the IS element is deleted at the end of
the head (in this case, the sequence “a*a” was deleted). Thus, despite this insertion, the
structural organization of chromosomes is maintained and, therefore, all the new individu-
als created by IS transposition are syntactically correct programs.

3.3.2. Root Transposition

All root IS elements start with a function, and therefore must be chosen among the se-
quences of the heads. For that, a point is randomly chosen in the head and the gene is
scanned downstream until a function is found. This function becomes the start position of
the RIS element. If no functions are found, the operator does nothing.

The RIS transposition operator randomly chooses the chromosome, the gene to be modi-
fied, and the start and termination points of the RIS element. It is worth noticing that this

16 | C FERREIRA

operator is slightly different from the original RIS transposition (Ferreira 2001) as the length
of the transposon is randomly chosen by this simpler RIS transposition.

Consider the following three-genic chromosome:

012345678901201234567890120123456789012
*Q/+b *bababaaQ*aQ*QaaababaQa*/+abbbaaab

Suppose that the sequence “/+b” in gene 1 was randomly chosen to become an RIS ele-
ment. The transposon copies itself and then transposes to the root of the gene, giving:

012345678901201234567890120123456789012
/+b *Q/ bababaaQ*aQ*QaaababaQa*/+abbbaaab

Note that during transposition, the whole head shifts to accommodate the RIS element,
losing, at the same time, the last symbols of the head (as many as there are in the
transposon). In this case, the sequence “+b*” was deleted and the transposon became
only partially duplicated. As with IS transposition, the tail of the gene subjected to RIS
transposition and all nearby genes remain unchanged. Note, again, that all the programs
newly created by this operator are syntactically correct as it also preserves the structural
organization of the chromosome.

3.3.3. Gene Transposition

In gene transposition an entire gene works as a transposon and transposes itself to the be-
ginning of the chromosome. In contrast to the other forms of transposition, in gene trans-
position, the transposon (the gene) is deleted at the place of origin.

The gene transposition operator randomly chooses the chromosome to be modified and
then randomly chooses one of its genes (except the first, obviously) to transpose. Consider
the following chromosome composed of three genes:

012345678901201234567890120123456789012
-ab+a-babaaaaQ+bab/babbbba *-*Q*-abbabab

Suppose gene 3 was chosen to undergo gene transposition. In this case the following chro-
mosome is obtained:

012345678901201234567890120123456789012
*-*Q*-abbabab -ab+a-babaaaaQ+bab/babbbba

Apparently, gene transposition is only capable of shuffling genes and, for sub-ETs linked
by commutative functions, this contributes nothing to adaptation in the short run. Note,
however, that when the sub-ETs are linked by a non-commutative function, the order of the

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 17

genes matters and, in this case, gene transposition becomes a macromutator. However, gene
transposition becomes particularly interesting when it is used in conjunction with recombi-
nation, for it allows not only the duplication of genes but also a more generalized shuffling
of genes or smaller building blocks.

3.4. Recombination

In gene expression programming there are three kinds of recombination: one-point recom-
bination, two-point recombination, and gene recombination. In all types of recombination,
two chromosomes are randomly chosen and paired to exchange some material between them,
creating two new daughter chromosomes.

3.4.1. One-point Recombination

In one-point recombination the parent chromosomes are paired and split up at exactly the
same point. The material downstream of the recombination point is afterwards exchanged
between the two chromosomes.

Consider the following parent chromosomes, each composed of three genes:

012345678901201234567890120123456789012
*b-Qb/aaabaabQ**Q+*bbaaabb*Q--QQaabbbbb
-/bQa+aabbbba/Q*b/aababaaa-/a/a/abaaabb

Suppose bond 4 in gene 2 (between positions 3 and 4) was randomly chosen as the crosso-
ver point. Then, the paired chromosomes are both cut at this bond, and exchange between
them the material downstream of the crossover point, forming the offspring below:

012345678901201234567890120123456789012
*b-Qb/aaabaabQ**Q /aababaaa-/a/a/abaaabb
-/bQa+aabbbba/Q*b +*bbaaabb*Q--QQaabbbbb

It is worth emphasizing that GEP chromosomes can cross over any point in the genome,
continually disrupting old building blocks and continually forming new ones. Furthermore,
due to both the multigenic nature of GEP chromosomes and the existence of non-coding
regions in most genes, entire genes and intact open reading frames can be swapped be-
tween parent chromosomes. Thus, the disruptive tendencies of one-point recombination
(splitting of building blocks) coexist side by side with its more conservative tendencies
(swapping of genes and ORFs), making one-point recombination (and of course two-point
recombination too) a very well balanced genetic operator. Furthermore, like all the other
recombinational operators, when one-point recombination is used together with gene trans-
position, it is also capable of duplicating genes.

18 | C FERREIRA

3.4.2. Two-point Recombination

In two-point recombination two parent chromosomes are paired side by side and two
points are randomly chosen as crossover points. The material between the recombina-
tion points is afterwards exchanged between the parent chromosomes, forming two new
daughter chromosomes.

Consider the following pair of recombining chromosomes:

012345678901201234567890120123456789012
/bQbb*aabaaaaQ*a/b+bbbaaabQ+/aa+babaabb
+-Qa/Qaabbaba+Q-+/+abbbaaa//+-/+bababab

Suppose bond 7 in gene 1 (between positions 6 and 7) and bond 4 in gene 3 (between
positions 3 and 4) were chosen as crossover points. Then, the following daughter chromo-
somes are created:

012345678901201234567890120123456789012
/bQbb*a abbaba+Q-+/+abbbaaa//+- a+babaabb
+-Qa/Qa abaaaaQ*a/b+bbbaaabQ+/a /+bababab

It is worth emphasizing that two-point recombination is more disruptive than one-point
recombination in the sense that it recombines the genetic material more thoroughly, con-
stantly destroying old building blocks and creating new ones. But like one-point recombi-
nation, two-point recombination has also a conservative side and it is good at swapping
entire genes and open reading frames. And, as observed for one-point recombination, two-
point recombination can also give rise to duplicated genes if it were used together with
gene transposition.

Notwithstanding, if the goal is to evolve good solutions, one-point or two-point recom-
bination should never be used as the only source of genetic variation as they tend to ho-
mogenize populations (Ferreira 2002c). However, together with mutation, inversion and
transposition, these operators are an excellent source of genetic variation and are more than
sufficient to evolve good solutions to virtually all problems.

3.4.3. Gene Recombination

In the third kind of GEP recombination, entire genes are exchanged between two parent
chromosomes, forming two daughter chromosomes containing genes from both parents.
The exchanged genes are randomly chosen and occupy exactly the same position in the
parent chromosomes.

Consider the following parent chromosomes:

012345678901201234567890120123456789012
/+*--bbaaabab*+b--aabaaaabQ**+*bababbab
Q//b-baababaa/ab/QQbaababaQ*+a++bbaaaaa

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 19

Suppose gene 2 was chosen to be exchanged. In this case the following offspring is formed:

012345678901201234567890120123456789012
/+*--bbaaabab /ab/QQbaababa Q**+*bababbab
Q//b-baababaa *+b--aabaaaab Q*+a++bbaaaaa

Note that, with this kind of recombination, similar genes can be exchanged but, most of the
times, the exchanged genes are very different from one another and new material is intro-
duced in the population.

It is worth emphasizing that this operator is unable to create new genes: the individuals
created by gene recombination are different arrangements of existing genes. Obviously, if
gene recombination were used as the unique source of genetic variation, more complex
problems could only be solved using very large initial populations in order to provide for
the necessary diversity of genes. However, GEP evolvability is based not only in the shuf-
fling of genes (achieved by gene recombination and gene transposition), but also in the
constant creation of new genetic material which is carried out essentially by mutation, in-
version and transposition (both IS and RIS transposition) and, to a lesser extent, by recom-
bination (both one-point and two-point recombination).

4. Evolving Computer Programs for Diagnosing Breast Cancer

In this section we are going to use gene expression programming to design a computer
program that can be used to diagnose breast cancer. The data sets used both for training
and testing were obtained from PROBEN1 – a set of neural network benchmark problems
and benchmarking rules (Prechelt 1994). Both the technical report and the data sets are
available through anonymous FTP from Neural Bench archive at Carnegie Mellon Univer-
sity (machine ftp.cs.cmu.edu, directory /afs/cs/project/connect/bench/contrib/prechelt)
and from the machine ftp.ira.uka.de in directory /pub/neuron. The file name in both cases
is proben1.tar.gz.

In this diagnosis task the goal is to classify a tumor as either benign (0) or malignant (1)
based on nine different cell analysis (input attributes or terminals).

The model presented here was obtained using the cancer1 data set of PROBEN1 where
the binary 1-of-m encoding in which each bit represents one of m-possible output classes
was replaced by a 1-bit encoding (“0” for benign and “1” for malignant). The first 350
samples were used for training and the last 174 were used to test the performance of the
model in real use. This means that absolutely no information from the test set samples or
the test set performance are available during the adaptive process. Thus, both the classifi-
cation accuracy and classification error on the test set can be used to evaluate the generali-
zation performance of the evolved models.

For this problem a very simple function set was chosen, composed only of the four arith-
metic operators, that is, F = {+, -, *, /}, where each function was weighted five times; the
set of terminals consisted of the nine attributes used in this problem and were represented

20 | C FERREIRA

by T = {d
0
, ..., d

8
} which correspond, respectively, to clump thickness, uniformity of cell

size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, and mitoses.

In classification problems where the output is often binary, it is important to set criteria
to convert real-valued numbers into zero or one. This is the 0/1 rounding threshold R

t
 that

converts the output of a chromosome into “1” if the output is equal to or greater than R
t
, or

into “0” otherwise. For this problem we are going to use R
t
 = 0.1.

The fitness function used to evaluate the performance of each candidate model is very
simple and is based on the number of samples correctly classified. Thus, the fitness f

i
 of an

individual program corresponds to the number of hits and is evaluated by the formula:

 if n > C
p
, then f

i
 = n; else f

i
 = 0 (10)

where n is the number of sample cases correctly evaluated, and C
p
 is the number of sam-

ples in the class with more members (predominant class).
As it is customary in genetic programming (Koza 1992) and gene expression program-

ming (Ferreira 2001), the parameters used per run are summarized in a table (Table 1).
Note that, in this case, a small population of 50 individuals and chromosomes composed of
three genes with an h = 8 and sub-ETs linked by addition were used. The program below

Table 1
Settings used in the breast cancer problem.

Number of generations 500

Population size 50

Number of training samples 350

Number of testing samples 174

Function set (+-*/)5

Terminal set d0 - d9

Rounding threshold 0.1

Head length 8

Number of genes 3

Linking function +

Chromosome length 51

Mutation rate 0.044

Inversion rate 0.1

IS transposition rate 0.1

RIS transposition rate 0.1

One-point recombination rate 0.3

Two-point recombination rate 0.3

Gene recombination rate 0.1

Gene transposition rate 0.1

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 21

was discovered after 423 generations (genes are shown separately and a dot is used to sepa-
rate each element):

.+.d0..*.*.+.*.d7.d0.d8.d3.d5.d4.d3.d5.d6
.+..d0.*.*.*.-.d5.d4.d1.d5.d1.d0.d2.d1.d1
.d5..+.d6.*.+.d5.d2.d2.d1.d1.d7.d0.d7.d4.d0 (11a)

It has a fitness of 340 evaluated against the training set of 350 fitness cases and maximum
fitness on the test set of 174 examples. This means that this model is very good indeed,
with a classification accuracy of 100% and a classification error of 0% in the test set. In the
training set a classification accuracy of 97.14% and a classification error of 2.86% were
obtained.

Note that for the expression of chromosome (11a) to be complete the sub-ETs must be
linked by addition and the 0/1 rounding threshold must be taken into account. With the
software APS 3.0 by Gepsoft, the model (11a) above can be automatically converted into a
fully expressed computer program or function, such as the C++ function below:

int apsModel(double d[])
{

const double ROUNDING_THRESHOLD = 0.1;
double dblTemp = 0;
dblTemp = ((((d[0]*d[8])*(d[3]+d[5]))+((d[4]*d[3])*d[7]))*d[0]);
dblTemp += ((d[0]+((d[0]-d[2])*d[5]))*((d[4]*d[1])*(d[5]*d[1])));
dblTemp += (d[5]*(((d[5]*d[2])+(d[2]+d[1]))*d[6]));
return (dblTemp > ROUNDING_THRESHOLD ? 1:0);

} (11b)

Similarly, all models evolved by gene expression programming can be immediately con-
verted into virtually any programming language through the use of grammars, including
the universal representation of parse trees (Figure 7). These trees can then be used to grasp
immediately the mathematical intricacies of the evolved models and therefore are ideal for
extracting knowledge from data.

As you can clearly see in Figure 7, all the cell analysis seem to be relevant to an accu-
rate diagnosis of breast cancer. This is, indeed, one of the great advantages of gene expres-
sion programming: the possibility of extracting knowledge almost instantaneously as the
models evolved by GEP can be represented in any conceivable language, including the
universal diagram representation of expression trees.

5. Conclusions

In this chapter the details of implementation of gene expression programming were thor-
oughly explained, giving other researchers the possibility of implementing it themselves.
Furthermore, this new algorithm was summarily compared to genetic algorithms and ge-
netic programming in order to bring into focus the fundamental differences between the
three techniques and, consequently, enable readers to appreciate the advantages a full-fledged

22 | C FERREIRA

Figure 7. The sub-ETs of the model (11b) evolved by gene expression programming to diagnose breast
cancer. (Expression trees drawn by Gepsoft APS 3.0.)

genotype/phenotype system brings into evolutionary computation. In addition, the classifi-
cation task solved in this work clearly demonstrates the modeling prowess of this new tech-
nique: the compact computer programs evolved by gene expression programming in its
native Karva code can be immediately used to generate highly sophisticated computer pro-
grams in virtually any programming language through the use of grammars as is already
done in commercially available software.

GEP AND THE EVOLUTION OF COMPUTER PROGRAMS | 23

Bibliography

Cramer, N. L. (1985). A Representation for the Adaptive Generation of Simple Sequential
Programs. In J. J. Grefenstette, ed., Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Erlbaum.

Dawkins, R. (1995). River out of Eden, Weidenfeld and Nicolson.

Ferreira, C. (2001). Gene Expression Programming: A New Adaptive Algorithm for Solving
Problems. Complex Systems, 13 (2): 87-129.

Ferreira, C. (2002a). Gene Expression Programming: Mathematical Modeling by an Artifi-
cial Intelligence, Angra do Heroísmo, Portugal.

Ferreira, C. (2002b). Genetic Representation and Genetic Neutrality in Gene Expression Pro-
gramming. Advances in Complex Systems, 5 (4): 389-408.

Ferreira, C. (2002c). Mutation, Transposition, and Recombination: An Analysis of the Evolu-
tionary Dynamics. In H. J. Caulfield, S.-H. Chen, H.-D. Cheng, R. Duro, V. Honavar, E. E.
Kerre, M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, Y. Yang, eds., Proceedings of
the 6th Joint Conference on Information Sciences, 4th International Workshop on Frontiers
in Evolutionary Algorithms, 614-617, Research Triangle Park, North Carolina, USA.

Friedberg, R. M. (1958). A Learning Machine: Part I. IBM Journal, 2 (1): 2-13.

Friedberg, R. M., B. Dunham, and J. H. North (1959). A Learning Machine: Part II. IBM
Journal, 3 (7): 282-287.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analy-
sis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan
Press (second edition: MIT Press, 1992).

Kimura, M. (1983). The Neutral Theory of Molecular Evolution, Cambridge University Press,
Cambridge, UK.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection, Cambridge, MA: MIT Press.

Prechelt, L. (1994). PROBEN1 – A Set of Neural Network Benchmark Problems and
Benchmarking Rules. Technical Report 21/94, University of Karlsruhe, Germany.

