
1

1. Genetic algorithms at large

The aim of this introduction is to bring into focus the basic
differences between gene expression programming (GEP) and
its predecessors, genetic algorithms (GAs) and genetic pro-
gramming (GP). According to Mitchell (1996), gene expres-
sion programming is, like GAs and GP, a genetic algorithm as
it uses populations of individuals, selects them according to
fitness, and introduces genetic variation using one or more
genetic operators. The fundamental difference between the
three algorithms resides in the nature of the individuals: in
GAs the individuals are symbolic strings of fixed length
(chromosomes); in GP the individuals are non-linear entities
of different sizes and shapes (parse trees); and in GEP the
individuals are encoded as symbolic strings of fixed length
(chromosomes) which are then expressed as non-linear enti-
ties of different sizes and shapes (expression trees).

1.1. Genetic algorithms

Genetic algorithms, invented by J. Holland in the 1960s, ap-
plied biological evolution theory to computer systems (Hol-
land 1975). Like all evolutionary computer systems, GAs are
an oversimplification of biological evolution. In this case,
solutions to a problem are encoded in character strings (usu-
ally 0’s and 1’s), and a population of these solutions is left
to evolve in order to find a solution to the problem at hand.
Populations, and therefore solutions, evolve because indi-
vidual solutions (chromosomes) reproduce with modifica-
tion. This is obviously the prerequisite for evolution to
occur. Modification in the original GA was introduced by

Gene Expression Programming in Problem Solving

Cândida Ferreira
Departamento de Ciências Agrárias

Universidade dos Açores
9701-851, Angra do Heroísmo, Portugal

candidaf@gene-expression-programming.com
http://www.gene-expression-programming.com

WSC6 tutorial, 2001

In this work, the recently invented learning algorithm, gene expression programming, will be introduced
focusing mainly on problem solving. Besides a simple introductory example, I chose two relatively com-
plex test problems of symbolic regression. One of these problems was chosen in an attempt to shed some
light on the question of constant creation in models discovered with learning algorithms and to provide a
palpable measure of the accuracy of the evolved models and the efficiency of the algorithms. The chosen
problems also show how gene expression programming is capable of modeling complex realities with great
accuracy, allowing, at the same time, the extraction of knowledge from the evolved models.

mutation, crossover, and inversion. In addition, for evolu-
tion to occur, individuals must pass the sieve of selection.
They are selected according to fitness, being the fitness
rigorously determined and its value used to reproduce them
proportionately. The higher the fitness, the higher the prob-
ability of leaving more offspring.

The chromosomes of GAs are simple replicators (e.g.,
Dawkins 1995), and therefore they survive by virtue of their
properties alone. This is equivalent to say that they function
simultaneously as genome and phenome. So, the chromo-
somes are not only keepers of the genetic information that is
replicated and transmitted with modification to the next gen-
eration, but are also the object of selection. The variety of
functions GAs’ chromosomes are able to play is severely
limited by this dual role and by their structural organization,
specially the simple language of chromosomes and their fixed
length. This very much resembles a simple RNA World, where
the linear RNA genome is also capable of exhibiting struc-
tural diversity. In this case, the whole structure of the RNA
molecule determines the functionality and, therefore, the fit-
ness of the individual. For instance, it wouldn’t be possible
in such systems to use only a particular region of the ge-
nome as a solution to the problem: the whole genome is
always the solution. Obviously these systems are severely
constrained.

1.2. Genetic programming

Genetic programming, invented by Cramer in 1985 and fur-
ther developed by Koza (1992), solved the problem of fixed
length solutions by creating non-linear entities with differ-

2

ent sizes and shapes. The alphabet used to create these
entities was also more varied, creating a richer, more versa-
tile system of representation. However, the created individu-
als lacked a simple, autonomous genome, functioning simul-
taneously both as genome and phenome. Again, in the jar-
gon of evolutionary theory, the entities of GP are simple
replicators that survive by virtue of their own properties.
The non-linear entities (parse trees) of GP resemble protein
molecules in their use of a richer alphabet and in their com-
plex, hierarchical representation. Thus, GP entities are capa-
ble of exhibiting a great variety of functionalities. But these
entities are very difficult to reproduce with modification be-
cause the genetic modifications are done directly on the parse
tree itself. Consequentely, most modifications generate struc-
tural impossibilities. As a comparison, it is worth noticing
that, in nature, the expression of any protein gene results
always in a valid protein structure (in nature, there is no
such thing as a structurally incorrect protein).

So, in GP, the genetic operators act directly on the parse
tree and, although at first sight this might appear advanta-
geous, it greatly limits this technique (it is impossible to
make an orange tree produce mangos only by grafting and
pruning). Furthermore, the pallet of genetic operators avail-
able to GP is very limited, because most of them would result
in invalid parse trees. Consequently, GP uses almost exclu-
sively a special kind of recombination that operates at the
level of parse trees. In this GP-specific crossover, selected
branches are exchanged between two parent parse trees to
create offspring. The idea behind its implementation was to
exchange smaller, mathematically concise blocks in order to
evolve more complex, hierarchical solutions composed of
smaller building blocks.

The mutation operator in GP also differs from point muta-
tions in nature in order to guarantee the creation of syntac-
tically correct programs. The mutation operator selects a node
in the parse tree and replaces the branch beneath that node
by a randomly generated branch. Again, the overall shape of
the tree is not greatly changed by this kind of mutation.

Permutation is the third operator used in GP and, like
recombination and mutation, is greatly constrained: two struc-
turally equivalent nodes (two terminals or two functions with
the same number of arguments) are chosen and their posi-
tions are exchanged. In this case the overall shape of the tree
remains unchanged.

Although J. Koza described these three operators as the
basic GP operators, crossover is practically the only genetic
operator used in most GP implementations. Not surprisingly,
in GP, huge populations of parse trees are used with the aim
of creating all the necessary building blocks with the incep-
tion of the initial population in order to guarantee the dis-
covery of a solution only by moving these initial building
blocks around.

Finally, due to the dual function of the parse trees (ge-
nome and phenome), and like GAs, GP is incapable of a sim-
ple, rudimentary expression: in all cases, the entire parse tree
is the solution.

1.3. Gene expression programming

Gene expression programming was invented by myself in
1999 (Ferreira 2001), and is the natural development of GAs
and GP.

GEP uses the same kind of diagram representation of GP,
but the entities produced by GEP (expression trees) are the
expression of a genome. Therefore, with GEP, the second
evolutionary threshold - the Phenotype Threshold - was
crossed, providing new and efficient solutions to evolution-
ary computation.

So, the great insight of GEP consisted in the invention of
chromosomes capable of representing any expression tree.
For that I created a new language (Karva) to read and ex-
press the information of GEP chromosomes. Furthermore,
the structure of chromosomes was designed to allow the
creation of multiple genes, each encoding a sub-expression
tree. The genes are structurally organized in a head and a
tail, and it is this structural and functional organization of
GEP genes that always guarantees the production of valid
programs, no matter how much or how profoundly we modify
the chromosomes.

In the next section I describe the structural and func-
tional organization of GEP chromosomes; how the chromo-
somes are translated into expression trees; how the chromo-
somes function as genotype and the expression trees as
phenotype; and how an individual program is created, ma-
tured, and reproduced, leaving offspring with new proper-
ties, thus, capable of adaptation.

2. Gene expression programming: an
introduction

In contrast to its analogous cellular gene expression, GEP is
rather simple. The main players in GEP are only two: the
chromosomes and the expression trees (ETs), being the lat-
ter the expression of the genetic information encoded in the
chromosomes. As in nature, the process of information de-
coding is called translation. And this translation implies ob-
viously a kind of code and a set of rules. The genetic code is
very simple: a one-to-one relationship between the symbols
of the chromosome and the functions or terminals they rep-
resent. The rules are also very simple: they determine the
spatial organization of the functions and terminals in the ETs
and the type of interaction between sub-ETs.

In GEP there are therefore two languages: the language
of the genes and the language of ETs, and knowing the se-
quence or structure of one, is knowing the other. In nature,
despite being possible to infer the sequence of proteins given
the sequence of genes and vice versa, we practically know
nothing about the rules that determine the three-dimensional
structure of proteins. But in GEP, thanks to the simple rules
that determine the structure of ETs and their interactions, it
is possible to infer immediately the phenotype given the
sequence of a gene, and vice versa. This bilingual and un-
equivocal system is called Karva language.

3

2.1. The genome

In GEP, the genome or chromosome consists of a linear, sym-
bolic string of fixed length composed of one or more genes.
Despite their fixed length, we will see that GEP chromosomes
code for ETs with different sizes and shapes.

2.1.1. Open reading frames and genes

The structural organization of GEP genes is better under-
stood in terms of open reading frames (ORFs). In biology, an
ORF or coding sequence of a gene begins with the ‘start’
codon, continues with the amino acid codons, and ends at a
termination codon. However, a gene is more than the respec-
tive ORF, with sequences upstream the start codon and se-
quences downstream the stop codon. Although in GEP the
start site is always the first position of a gene, the termina-
tion point not always coincides with the last position of a
gene. It is common for GEP genes to have non-coding re-
gions downstream the termination point. For now we won’t
consider these non-coding regions, because they don’t in-
terfere with the product of expression.

Consider, for example, the algebraic expression:

(2.1)

It can also be represented as a diagram:

governing the spatial distribution of functions and termi-
nals. First, the start of a gene corresponds to the root of the
ET, forming this node the first line. Second, depending on
the number of arguments to each element (functions may
have a different number of arguments, whereas terminals
have an arity of zero), in the next line are placed as many
nodes as there are arguments to the functions in the previ-
ous line. Third, from left to right, the nodes are filled, in the
same order, with the elements of the gene. Fourth, the proc-
ess is repeated until a line containing only terminals is formed.
So, for the K-expression 2.3 above, the root of the ET is the
symbol at position 0, obtaining:

where ‘Q’ represents the square root function.
This kind of diagram representations is in fact the phe-

notype of GEP chromosomes, being the genotype easily in-
ferred from the phenotype as follows:

0123456789
+/Q*c-abde (2.2)

which is the straightforward reading of the ET from left to
right and from top to bottom (exactly as we read a page of
text). The expression 2.2 is an ORF, strarting at ‘+’ (position
0) and terminating at ‘e’ (position 9). I named these ORFs K-
expressions (from Karva notation).

Consider another ORF, the following K-expression:

012345678901
*-/Qb+b+aaab (2.3)

Its expression as an ET is also very simple and straightfor-
ward. To correctly express the ORF, we must follow the rules

The multiplication function has two arguments, so the next
line will have two nodes, in this case, the symbols at posi-
tion 1 and 2:

The subtraction and division are functions of two arguments,
and therefore in the next line are placed four more nodes. In
this case, the symbols at positions 3, 4, 5, and 6:

Now we have two different functions in the third line: one is
a function of one argument (Q), and another a function of
two arguments (+). Therefore three more nodes are required
in the next line. In this case, they are filled with the elements
at positions 7, 8, and 9:

In this new line, although there are three nodes, only one of
them is a function (+). Again, the required nodes are placed
below that function and filled with the next elements in the
ORF (positions 10 and 11), obtaining:

4

In this case, with this step the ET was completely formed as
the last line contains only nodes with terminals. We will see
that, thanks to the structural organization of GEP genes, the
last line of all ETs contains exclusively terminals. This is
equivalent to say that all GEP ETs are syntactically correct.

Looking at the structure of GEP ORFs only, it is difficult
or even impossible to see the advantages of such a repre-
sentation, except perhaps for its simplicity and elegance.
However, when ORFs are analyzed in the context of a gene,
the advantages of this representation become obvious. As I
said, GEP chromosomes have fixed length, and they are com-
posed of one or more genes of equal length. Therefore the
length of a gene is also fixed. Thus, in GEP, what varies is not
the length of genes which is constant, but the length of the
ORFs. Indeed, the length of an ORF may be equal or less
than the length of the gene. In the first case, the termination
point coincides with the end of the gene, and in the last case,
the termination point is somewhere upstream the end of the
gene.

So, what is the role of these non-coding regions in GEP
genes? They are in fact the essence of GEP and evolvability,
for they allow the modification of the genome using any
genetic operator without restrictions, producing always syn-
tactically correct programs without the need for a compli-
cated editing process or highly constrained ways of imple-
menting genetic operators. Indeed, this is the paramount
difference between GEP and previous GP implementations,
with or without linear genomes.

Let’s analyze then the structural organization of GEP
genes in order to understand how they invariably code for
syntactically correct programs and why they allow an un-
constrained application of any genetic operator.

2.1.2. GEP genes

GEP genes are composed of a head and a tail. The head
contains symbols that represent both functions and termi-
nals, whereas the tail contains only terminals. For each prob-
lem, the length of the head h is chosen, whereas the length
of the tail t is a function of h and the number of arguments of
the function with more arguments n, and is evaluated by the
equation:

 t = h (n-1) + 1 (2.4)

Consider a gene for which the set of functions F = {Q, *,
/, -, +} and the set of terminals T = {a, b}. In this case, n = 2;
and if we chose an h = 15, then t = 16. Thus, the length of the
gene g is 15+16=31. One such gene is shown below (the tail
is shown in bold):

0123456789012345678901234567890
/aQ/b*ab/Qa*b*- ababaababbabbbba (2.5)

It codes for the following ET:

In this case, the ORF ends at position 7, whereas the gene
ends at position 30.

Suppose now a mutation occurred at position 2, chang-
ing the ‘Q’ into ‘+’. Then the following gene is obtained:

0123456789012345678901234567890
/a+/b*ab/Qa*b*- ababaababbabbbba (2.6)

And its expression gives:

5

In this case, the termination point shifts 10 positions to the
right (position 17).

Obviously the opposite might also happen, and the ORF
is shortened. For example, consider again gene 2.5 above,
and suppose a mutation occurred at position 5, changing
the ‘*’ into ‘b’:

0123456789012345678901234567890
/aQ/bbab/Qa*b*- ababaababbabbbba (2.7)

Its expression results in the following ET:

In this case, the ORF ends at position 5, shortening the pa-
rental ET in 2 nodes.

So, despite its fixed length, each gene has the potential
to code for ETs of different sizes and shapes, being the sim-
plest composed of only one node (when the first element of
a gene is a terminal) and the biggest composed of as many
nodes as the length of the gene (when all the elements of the
head are functions with the maximum number of arguments).

It is evident from the examples above, that any modifica-
tion made in the genome, no matter how profound, results
always in a structurally correct ET. The only thing we must
be careful about, is in not disrupting the structural organiza-
tion of genes, maintaining always the boundaries between
head and tail and not allowing symbols representing func-
tions on the tail. We will pursue these matters further in
section 2.3 where the mechanisms and effects of different
genetic operators are thoroughly analyzed.

2.1.3. Multigenic chromosomes

GEP chromosomes are usually composed of more than one
gene of equal length. For each problem or run, the number
of genes, as well as the length of the head, are a priori
chosen. Each gene codes for a sub-ET and the sub-ETs
interact with one another forming a more complex multi-
subunit ET. The details of such interactions will be fully
explained in section 2.2.

Consider, for example, the following chromosome with
length 45, composed of three genes (the tails are shown in
bold):

012345678901234
Q/*b+Qa babaabaa
-abQ/*+ bababbab
**-*bb/ babaaaab (2.8)

It has three ORFs, and each ORF codes for a sub-ET (Figure
1). Position zero marks the start of each gene. The end of
each ORF, though, is only evident upon construction of the
respective sub-ET. As shown in Figure 1, the first ORF ends
at position 8 (sub-ET

1
); the second ORF ends at position 2

(sub-ET
2
); and the last ORF ends at position 10 (sub-ET

3
).

Thus, GEP chromosomes contain several ORFs, each ORF
coding for a structurally and functionally unique sub-ET.
Depending on the problem at hand, these sub-ETs may be
selected individually according to their respective fitness
(for example, in problems with multiple outputs), or they may
form a more complex, multi-subunit ET and be selected ac-
cording to the fitness of the whole, multi-subunit ET. The
patterns of expression and the details of selection will be
presented below. However, keep in mind that each sub-ET is
both a separate entity and a part of a more complex, hierar-
chical structure, and, as in all complex systems, the whole is
more than the sum of its parts.

a b

Q

a a

* b

b

Q

/

/

ab

b b

ab

a)

b) S ub-E T 1 S ub-E T 3S ub-E T 2

012345678901234012345678901234012345678901234
Q/*b+Qa -abQ/*+ **-*bb/babaabaa bababbab babaaaab

Figure 1 . Expression of GEP genes as sub-ETs. a) A three-genic chromo-
some with the tails shown in bold. Position zero marks the start of each gene.
b) The sub-ETs codified by each gene.

6

2.2. Posttranslational interactions and linking functions

In GEP, from the simplest individual to the most complex, the
expression of the genetic information starts with translation,
the transfer of information from a gene into an ET. We have
already seen that translation results in the formation of sub-
ETs with different sizes and shapes but, in most cases, the
complete expression of the genetic information requires the
interaction of these sub-ETs with one another. One of the
most simple interactions is the linking of sub-ETs by a par-

ticular function. This process is similar to the assemblage of
different protein subunits in a multi-subunit protein.

When the sub-ETs are algebraic or Boolean expressions,
any algebraic or Boolean function with more than one argu-
ment can be used to link the sub-ETs in a final, multi-subunit
ET. The functions most chosen are addition or multiplication
for algebraic sub-ETs, and OR or IF for Boolean sub-ETs.

Figure 2 illustrates the linking of three sub-ETs by addi-
tion. Note that the final ET could be linearly encoded as the
following K-expression:

Figure 2 . Expression of algebraic multigenic chromosomes as multi-subunit expression trees. a) A three-genic
chromosome with the tails shown in bold. b) The sub-ETs codified by each gene. c) The result of posttranslational
linking with addition. The linking functions are shown in gray.

7

012345678901234567890123456789012
++*+-Q*bQ-ba*-*/b/aba*ba/aa+baaab (2.9)

However, to evolve solutions to complex problems, it is more
effective the use of multigenic chromosomes, for they permit
the modular construction of complex, hierarchical structures,
where each gene codes for a small building block (Ferreira
2001). These small building blocks are separated from each
other, and thus can evolve independently. Furthermore, these
multigenic systems are much more efficient than unigenic
ones. Indeed, GEP is effectively a hierarchical invention sys-
tem capable of discovering simple blocks and using them to
form more complex structures.

Figure 3 shows another example of posttranslational in-
teraction, where three Boolean sub-ETs are linked by the
function IF(x, y, z) (if x = 1, then return y; otherwise return z).
Again, the multi-subunit ET could be linearized into the fol-
lowing K-expression:

Figure 3. Expression of Boolean multigenic chromosomes as multi-subunit expression trees. a) A three-genic chromo-
some with the tails shown in bold (‘N’ is a function of one argument and represents NOT; ‘A’ and ‘O’ are functions of
two arguments and represent respectively AND and OR; ‘I’ is a function of three arguments and represents IF; the
remaining symbols are terminals). b) The sub-ETs codified by each gene. c) The result of posttranslational linking with
IF. The linking function is shown in gray.

012345678901234567890123
IOIAcIANAcbbAcIbbaaaaaab (2.10)

where N, A, O, and I represent respectively the Boolean
functions NOT, AND, OR and IF, taking ‘N’ one argument,
‘A’ and ‘O’ two, and ‘I’ three arguments.

So, for each problem, the type of linking function, as well
as the number of genes and the length of each gene, are a
priori chosen for each problem. While attempting to solve a
problem, we can always start by using a single-gene chro-
mosome and then proceed by increasing the length of the
head. If it becomes very large, we can increase the number of
genes and obviously choose a function to link the sub-ETs.
We can start with addition for algebraic expressions or OR
for Boolean expressions, but in some cases another linking
function might be more appropriate (like multiplication or IF,
for instance). The idea, of course, is to find a good solution,
and GEP provides the means of finding one very efficiently.

8

2.3. Genetic operators and evolution

Genetic operators are the core of all genetic algorithms, and
two of them are common to all evolutionary systems: selec-
tion and replication. Although the center of the storm, these
operators, by themselves, do nothing in terms of evolution.
In fact, they can only cause genetic drift, making populations
less and less diverse with time until all the individuals are
exactly the same (see Figures 4 and 5 below). So, the touch
stone of all evolutionary systems is modification, or more
specifically, the genetic operators that cause variation. And
different algorithms create this modification differently. For
instance, GAs normally use mutation and recombination; GP
uses almost exclusively GP-specific recombination; and GEP
uses mutation, recombination and transposition.

With the exception of GP, which is severely constrained
in terms of tools of genetic modification, in GAs and GEP, it
is possible to implement easily a vast set of genetic opera-
tors capable of causing genetic diversification (from now
on, unless otherwise stated, I will use the designation ‘ge-
netic operators’ to refer to those with intrinsic transforming
power, putting selection and replication aside) because the
chromosomes of both algorithms allow their easy implemen-
tation. In fact, I implemented several genetic operators in
GEP in order to shed some light on the dynamics of evolu-
tionary systems (Ferreira 2001), but what is important is to
provide for the necessary degree of genetic diversification to
allow evolution. Mutation alone (by far the most important
operator) is capable of wonders. However, the interplay of
mutation and the other genetic operators not only allows an
effective evolution but also allows the duplication of building
blocks, their circulation in the genetic pool, the creation of
repetitive sequences, etc., making things really interesting.

In the remainder of this section we will see how genetic
operators (including selection and replication) work and how
they can be easily implemented in GEP.

2.3.1. Selection and replication

All artificial systems use a scheme to select individuals more
or less according to fitness. Some schemes are totally deter-
ministic, whereas others include a touch of unpredictability.
For GEP, I chose one of the latter, namely, a fitness propor-
tionate roulette-wheel scheme (Goldberg 1989) coupled with
the cloning of the best individual (simple elitism) as it pretty
accurately mimics nature and produces very good results.

According to fitness and the luck of the roulette, indi-
viduals are selected to be replicated. Although vital, replica-
tion is the most uninteresting operator. During replication,
chromosomes are dully copied into the next generation. The
fitter the individual the higher the probability of leaving more
offspring. Thus, during replication, the genomes of the se-
lected individuals are copied as many times as the outcome
of the roulette. The roulette is spun as many times as there
are individuals in the population, maintaining always the
same population size.

Figure 4 shows how selected individuals are replicated
(the other operators and elitism were switched off in order to
better understand replication and roulette-wheel selection).
For instance, chromosome 3, the best individual of generation
0, left only one daughter (chromosome 4 of generation 1);
chromosome 1, the second best of generation 0, left two
descendants (chromosomes 1 and 9 of generation 1); chro-
mosome 0, a medium individual, died without leaving off-
spring; and, although one of the most unfit of generation 0,
chromosome 6, didn’t reproduce, a mediocre individual, chro-
mosome 9, left one of the biggest progeny (chromosomes 5
and 6 of generation 1). The outcome of such an ‘evolutionary’

Generation N: 0
01234567890120123456789012
*+-/a*aaaaaaa//+*aaaaaaaaa-[0] = 10.64033
/-/a//aaaaaaa+*+a/+aaaaaaa-[1] = 16.2117
*+a-+aaaaaaaa---///aaaaaaa-[2] = 13.81953
+a*/-aaaaaaaa**+a*aaaaaaaa-[3] = 18.32701
*-+a/-aaaaaaa/aa+a/aaaaaaa-[4] = 11.13926
+*//a/aaaaaaa---aa-aaaaaaa-[5] = 13.88255
--*aaaaaaaa/-a///aaaaaaa-[6] = 7.777691
/++a-*aaaaaaa/+a*+-aaaaaaa-[7] = 13.14786
//+*aaaaaaaaa*+-/--aaaaaaa-[8] = 7.713599
-**+-/aaaaaaa*//aa/aaaaaaa-[9] = 8.73985

Generation N: 1
01234567890120123456789012
*+a-+aaaaaaaa---///aaaaaaa-[0] = 13.81953
/-/a//aaaaaaa+*+a/+aaaaaaa-[1] = 16.2117
*-+a/-aaaaaaa/aa+a/aaaaaaa-[2] = 11.13926
+*//a/aaaaaaa---aa-aaaaaaa-[3] = 13.88255
+a*/-aaaaaaaa**+a*aaaaaaaa-[4] = 18.32701
-**+-/aaaaaaa*//aa/aaaaaaa-[5] = 8.73985
-**+-/aaaaaaa*//aa/aaaaaaa-[6] = 8.73985
//+*aaaaaaaaa*+-/--aaaaaaa-[7] = 7.713599
/++a-*aaaaaaa/+a*+-aaaaaaa-[8] = 13.14786
/-/a//aaaaaaa+*+a/+aaaaaaa-[9] = 16.2117

Figure 4. An initial population (generation 0) and their
immediate descendants (generation 1). The value after each
chromosome indicates the fitness.

process is shown in Figure 5, where we can see that by
generation 8 all the individuals are descendants of only one
individual: in this case, chromosome 1 of the initial popula-

Generation N: 8
01234567890120123456789012
/-/a//aaaaaaa+*+a/+aaaaaaa-[0] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[1] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[2] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[3] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[4] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[5] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[6] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[7] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[8] = 16.2117
/-/a//aaaaaaa+*+a/+aaaaaaa-[9] = 16.2117

Figure 5. Illustration of genetic drift. After 8 generations, the
population loses all diversity, and all its members are descend-
ants of chromosome 1 of the initial population (see Figure 4).

9

tion (see Figure 4). Indeed, replication and selection alone
are only capable of causing genetic drift.

2.3.2. Mutation

Mutations can occur anywhere in the chromosome. How-
ever, the structural organization of chromosomes must re-
main intact. In the heads, any symbol can change into an-
other (function or terminal); in the tails, terminals can only
change into terminals. This way, the structural organization
of chromosomes is maintained, and all the new individuals
produced by mutation are structurally correct programs.

Typically, I use a mutation rate (p
m
) equivalent to two

point mutations per chromosome. Consider the following
three-genic chromosome:

012345678900123456789001234567890
Q+bb* bbbaba - **--abbbaaQ* a*Qbbbaab

Suppose a mutation changed the ‘*’ at position 4 in gene 1
to ‘/’; the ‘-’ at position 0 in gene 2 to ‘Q’; and the ‘a’ at
position 2 in gene 3 to ‘+’, obtaining:

012345678900123456789001234567890
Q+bb/ bbbaba Q**--abbbaaQ* +*Qbbbaab

 Note that if a function is mutated into a terminal or vice
versa, or a function of one argument is mutated into a func-
tion of two arguments or vice versa, the ET is modified dras-
tically. Note also that the mutation on gene 1 is an example of
a neutral mutation, as it occurred in the non-coding region of
the gene. It is worth emphasizing that the non-coding re-
gions of GEP chromosomes are ideal places for the accumu-
lation of neutral mutations. In summary, in GEP there are no
constraints neither in the kind of mutation nor the number of
mutations in a chromosome: in all cases the newly created
individuals are syntactically correct programs.

2.3.3. Transposition and insertion sequence elements

The transposable elements of GEP are fragments of the ge-
nome that can be activated and jump to another place in the
chromosome. In GEP there are three kinds of transposable
elements: i) short fragments with a function or terminal in the
first position that transpose to the head of genes except the
root (insertion sequence elements or IS elements); ii) short
fragments with a function in the first position that transpose
to the root of genes (root IS elements or RIS elements); iii)
and entire genes that transpose to the beginning of chromo-
somes.

2.3.3.1. Transposition of IS elements

Any sequence in the genome might become an IS element,
being therefore these elements randomly selected through-
out the chromosome. A copy of the transposon is made and
inserted at any position in the head of a gene, except the first

position. Typically, a transposition rate (p
is
) of 0.1 and a set

of three IS elements of different lengths is used. The trans-
position operator randomly chooses the chromosome, the
start of the IS element, the target site, and the length of the
transposon.

Consider the following two-genic chromosome:

0123456789012345601234567890123456
-ab a+Q-baabaabaabQ*+*+-/aababbaaaa

Suppose that the sequence ‘a+Q’ in gene 1 (positions 3-5)
was randomly chosen to become an IS element and trans-
pose between positions 2-3 in gene 2, obtaining:

0123456789012345601234567890123456
-ab a+Q-baabaabaabQ*+ a+Q*+ababbaaaa

Note that, on the one hand, the sequence of the transposon
becomes duplicated but, on the other, a sequence with as
many symbols as the IS element was deleted at the end of
the head of the target gene (in this case the sequence ‘-/a’
was deleted. Thus, despite the insertion, the structural or-
ganization of chromosomes is maintained, and therefore all
the new individuals created by transposition are syntacti-
cally correct programs.

2.3.3.2. Root transposition

All RIS elements start with a function, and thus are chosen
among the sequences of the heads. For that, a point is ran-
domly chosen in the head and the gene is scanned down-
stream until a function is found. This function becomes the
start position of the RIS element. If no functions are found,
the operator does nothing.

Typically, I use a root transposition rate (p
ris

) of 0.1 and a
set of three RIS elements of different sizes. This operator
randomly chooses the chromosome, the gene to be modi-
fied, the start of the RIS element, and its length. Consider the
two-genic chromosome below:

0123456789012345601234567890123456
*-b Q/+ +/babbabbba//Q*baa+bbbabbbbb

Suppose that the sequence ‘Q/+’ in gene 1 was randomly
chosen to become an RIS element. Then, a copy of the
transposon is made into the root of the gene, obtaining:

0123456789012345601234567890123456
Q/+ *-b Q/ babbabbba//Q*baa+bbbabbbbb

Note that during transposition, the whole head shifts to ac-
commodate the RIS element, losing, at the same time, the last
symbols of the head (as many as the transposon length). In
this case, the sequence ‘++/’ was deleted, and the transposon
became only partially duplicated. As with IS elements, the
tail of the gene subjected to transposition and all nearby
genes stay unchanged. Note, again, that the newly created

10

programs are syntactically correct because the structural or-
ganization of the chromosome is maintained.

2.3.3.3. Gene transposition

In gene transposition an entire gene functions as a
transposon and transposes itself to the beginning of the
chromosome. In contrast to the other forms of transposition,
in gene transposition, the transposon (the gene) is deleted
at the place of origin.

Apparently, gene transposition is only capable of shuf-
fling genes, and for ETs linked by commutative functions, this
contributes nothing to adaptation in the short run. However,
gene transposition is very important when coupled with other
operators (all kinds of GEP recombination; see below), for it
allows not only the duplication of genes but also a more gen-
eralized recombination of genes or smaller building blocks.

The chromosome to undergo gene transposition is ran-
domly chosen, and one of its genes (except the first, obvi-
ously) is randomly chosen to transpose. Consider the fol-
lowing chromosome composed of 3 genes:

012345678901201234567890120123456789012
/+Qa*bbaaabaa*a*/Qbbbbbabb /Q-aabbaaabbb

Suppose gene 3 was chosen to undergo gene transposition.
Then the following chromosome is obtained:

012345678901201234567890120123456789012
/Q-aabbaaabbb /+Qa*bbaaabaa*a*/Qbbbbbabb

Note that for numerical applications where the function
chosen to link the genes is commutative, the expression evalu-
ated by the chromosome is not modified. But the situation
differs in other applications where the linking function is not
commutative, for instance, the IF function chosen to link
some sub-ETs in Boolean problems (see Figure 3). Note that,
in this case, gene transposition has a very drastic effect,
generating most of the times nonviable individuals.

2.3.4. Recombination

In GEP there are three kinds of recombination: one-point
recombination, two-point recombination and gene recombi-
nation. In all types of recombination, two chromosomes are
randomly chosen and paired to exchange some material be-
tween them, creating two new daughter chromosomes. Usu-
ally the daughter chromosomes are as different from each
other as they are from their parents.

2.3.4.1. One-point recombination

In 1-point recombination the chromosomes are paired and
split in the same point. The material downstream of the re-
combination point is afterwards exchanged between the two
chromosomes.

Consider the following parent chromosomes:

0123456789012345601234567890123456
+*-b-Qa*aabbbbaaa-Q-//b/*aabbabbab
++//b//-bbbbbbbbb-*-ab/b+bbbaabbaa

Suppose bond 6 in gene 1 (between positions 5 and 6) was
randomly chosen as the crossover point. Then, the paired
chromosomes are cut at this bond, and exchange between
them the material downstream the crossover point, forming
the offspring below:

0123456789012345601234567890123456
+*-b-Q /-bbbbbbbbb-*-ab/b+bbbaabbaa
++//b/ a*aabbbbaaa-Q-//b/*aabbabbab

It is worth noticing that with this kind of recombination,
most of the times, the offspring created exhibits different
traits from those of the parents. Like the above presented
operators, one-point recombination is a very important
source of genetic variation, being, after mutation, one of
the operators most chosen in gene expression program-
ming. Depending on the rates of the remaining types of
recombination, I use a one-point recombination rate (p

1r
)

between 0.3 and 0.7. A good rule of thumb is to use a global
crossover rate of 0.7 (the sum of the rates of the three kinds
of recombination).

2.3.4.2. Two-point recombination

In 2-point recombination the chromosomes are paired and
two points are randomly chosen as crossover points. The
material between the recombination points is afterwards ex-
changed between the two parent chromosomes, forming two
new daughter chromosomes.

Consider the following parent chromosomes:

0123456789012345601234567890123456
*-+Q/Q*QaaabbbbabQQab*++-aabbabaab
Q/-b-+/abaabbbaab/*-aQa*babbabbabb

Suppose bond 5 in gene 1 (between positions 4 and 5) and
bond 7 in gene 2 (between positions 6 and 7) were chosen as
the crossover points. Then, the following chromosomes are
created:

0123456789012345601234567890123456
-+Q/ +/abaabbbaab/-aQa* -aabbabaab
Q/-b- Q*QaaabbbbabQQab*++ babbabbabb

It’s worth noticing that the non-coding regions of GEP
chromosomes are ideal regions where chromosomes can be
split to cross over without interfering with the ORFs and, in
fact, during search, these regions are most favored by crosso-
ver.

One-point or two-point recombination are, after muta-

11

tion, the operators most used in GEP. Indeed, the interplay
between mutation and one-point and two-point recombina-
tion is an excellent source of genetic diversity and is more
than sufficient to evolve solutions to virtually all problems.

2.3.4.3. Gene recombination

In the third kind of GEP recombination, gene recombination,
entire genes are exchanged between two parent chromo-
somes, forming two daughter chromosomes containing genes
form both parents. The exchanged genes are randomly cho-
sen and occupy the same position in the parent chromo-
somes. Consider the following parent chromosomes:

012345678901201234567890120123456789012
/+/ab-aabbbbb-aa**+aaabaaa-+--babbbbaab
+baQaaaabaaba*-+a-aabbabbb/ab/+bbbabaaa

Suppose gene 2 was chosen to be exchanged. In this case
the following offspring is formed:

012345678901201234567890120123456789012
/+/ab-aabbbbb *-+a-aabbabbb -+--babbbbaab
+baQaaaabaaba -aa**+aaabaaa /ab/+bbbabaaa

The daughter chromosomes contain entire genes from both
parents. Note that, with this kind of recombination, similar
genes can be exchanged but, most of the times, the exchanged
genes are very different and new material is introduced in
the population.

It is worth noticing that this operator is unable to create
new genes: the individuals created are different arrangements
of existing genes. Understandingly, when gene recombina-
tion is used as the unique source of genetic variation, more
complex problems can only be solved using very large initial
populations in order to provide for the necessary diversity
of genes. However, the creative power of GEP is based not
only in the shuffling of genes or building blocks, but also in
the constant creation of new genetic material.

2.4. Solving a simple problem with GEP

The aim of this section is to study a successful run in its
entirety in order to understand how populations of GEP indi-
viduals evolve towards a perfect or good solution.

In symbolic regression or function finding the goal is to
find an expression that satisfactorily explains the dependent
variable. The input into the system is a set of fitness cases in
the form (a

(i,0)
, a

(i,1)
, ..., a

(i,n-1)
, y

i
) where a

(i,0)
 - a

(i,n-1)
 are the

independent variables and y
i
 is the dependent variable. The

set of fitness cases consists of the adaptation environment
where solutions adapt, discovering, in the process, solu-
tions to problems.

In the example of this section, a simple test function was
chosen, being therefore the fitness cases computer gener-
ated. Thus, in this case, we know exactly which function we

are aiming at (remember, however, that in real-world prob-
lems the function is obviously unknown). So, suppose we
are given a sampling of the numerical values from the curve

(2.11)

over 10 randomly chosen points in the real interval [-10, +10]
and we wanted to find a function fitting those values within
a certain error. In this case, we are given a sample of data in
the form of 10 pairs (a

i
, y

i
), where a

i
 is the value of the inde-

pendent variable in the given interval and y
i
 is the respective

value of the dependent variable (Table 1). These 10 pairs are
the fitness cases (the input) that will be used as the adapta-
tion environment. The fitness of a particular program will
depend on how well it performs in this environment.

There are five major steps in preparing to use gene ex-
pression programming, and the first is to choose the fitness
function. For this problem we could measure the fitness f

i
 of

an individual program i by the following expression:

(2.12)

where M is the range of selection, C
(i,j)

 the value returned by
the individual chromosome i for fitness case j (out of C

t

fitness cases) and T
j
 is the target value for fitness case j. If

|C
(i,j)

 - T
j
| (the precision) less or equal to 0.01, then the preci-

sion is equal to zero, and f
i
 = f

max
 = C

t
.M. For this problem, we

will use an M = 100 and, therefore, f
max

 = 1000. The advantage
of this kind of fitness function is that the system can find the
optimal solution for itself (Ferreira 2001).

The second major step consists in choosing the set of
terminals T and the set of functions F to create the chromo-
somes. In this problem, the terminal set consists obviously
of the independent variable, i.e., T = {a}. The choice of the
appropriate function set is not so obvious, but a good guess
can always be done in order to include all the necessary
functions. In this case, to make things simple, we will use the
four basic arithmetic operators. Thus, F = {+, -, *, /}.

Table 1
Set of 10 random fitness cases used in
the simple problem of symbolic regression.

a f(a)

-4.2605

-2.0437

-9.8317

2.7429

0.7328

-8.6491

-3.6101

-1.8999

-4.8852

7.3998

46.9346

9.44273

271.324

29.0563

4.07659

208.123

32.8783

8.02906

62.8251

180.071

12

The third major step is to choose the chromosomal archi-
tecture, i.e., the length of the head and the number of genes.
In this problem we will use an h = 6 and three genes per
chromosome.

The fourth major step in preparing to use gene expres-
sion programming is to choose the linking function. In this
case we will link the sub-ETs by addition.

And finally, the fifth major step is to choose the set of
genetic operators that cause variation and their rates. In this
case we will use a combination of all genetic operators (mu-
tation, the three kinds of transposition, and the three kinds
of recombination) (see Table 2).

The parameters used per run are summarized in Table 2. I
chose a small population of 20 individuals for this problem in
order to simplify the analysis of the evolutionary process
and not fill this text with pages of encoded individuals. How-
ever, one of the advantages of GEP is that it is capable of
solving relatively complex problems using small population
sizes and, thanks to the compact Karva notation, it is possi-
ble to fully analyze the evolutionary history of a run.

Figure 6 shows the progression of average fitness and
the fitness of the best individual of a successful run. In this
run, a perfect solution was found in generation 3.

The initial population of this run, together with the fit-
ness of each individual, is shown in Figure 7. Note that three
of the 20 individuals are nonviable and thus have fitness
zero. The best of generation individual, chromosome 19, has
fitness 661.5933. Its expression and the correspondent math-
ematical equation are shown in Figure 8. Note that gene 2
returns zero and, therefore, might be considered a
pseudogene. Note also how the algorithm created constants
in all sub-ETs on its own.

Table 2
Parameters for the simple symbolic regression problem.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

Generations

F
itn

es
s

(m
ax

 1
00

0)

Best Ind

Avg fitness

Figure 6 . Progression of average fitness of the population
and the fitness of the best individual for a successful run of
the experiment summarized in Table 2.

The descendants of the individuals of the initial popula-
tion are shown in Figure 9. Note that chromosome 0 is the
clone of the best individual of the previous generation. In
this generation, a new individual was created, chromosome
7, considerably better than the best individual of the initial
population. This chromosome has a fitness of 961.8512 and
its expression is shown in Figure 10.

The descendants of the individuals of this generation
are shown in Figure 11 (generation 2). Note that despite the
global improvement in fitness (compare the average fitness
of both populations in Figure 6), none of the descendants
surpassed the best individual of the previous generation.

And finally, in the next generation (generation 3 of Fig-
ure 11), an individual with maximum fitness was created. Note
that this chromosome is a descendant, via mutation, of chro-
mosome 18 of the previous generation: their chromosomes
differ only in one position (the ‘-’ at position 2 of gene 1 was
replaced by ‘*’). The expression of this chromosome shows
that it codes for a perfect solution (Figure 12).

3. Function finding

We have already seen how GEP can be used to do symbolic
regression in the simple example of section 2.4. However,
despite the fact that the target function contained simple
numerical constants (3, 2, and 1), there was no explicit facil-
ity to generate them: the algorithm created them on its own.

In this section I will show how GEP solves the problem of
explicit constant creation to do symbolic regression. Fur-

13

Generation N: 0
012345678901201234567890120123456789012
+**/*/aaaaaaa/+a/a*aaaaaaa/a-*a+aaaaaaa-[0] = 577.3946
--aa++aaaaaaa+-/a*/aaaaaaa/--a-aaaaaaaa-[1] = 0
/***/+aaaaaaa*+/+-aaaaaaaa++aa/aaaaaaaa-[2] = 463.6533
-/+/++aaaaaaa+-//+/aaaaaaa+-/a/*aaaaaaa-[3] = 546.4241
++a/*aaaaaaaa+-+a*-aaaaaaa-a/-*aaaaaaaa-[4] = 460.8625
*+*a-*aaaaaaa*a/aa/aaaaaaa//+*a/aaaaaaa-[5] = 353.2168
*/**+aaaaaaaa+a/**+aaaaaaa----+/aaaaaaa-[6] = 492.6827
*aa-+-aaaaaaa+a/-+/aaaaaaa***/-*aaaaaaa-[7] = 560.9289
+/-*//aaaaaaa*+*//+aaaaaaa-/**+*aaaaaaa-[8] = 363.4358
--a+*/aaaaaaa+a++--aaaaaaa+a+aa+aaaaaaa-[9] = 386.7576
+-*-**aaaaaaa*/-+**aaaaaaa*+--++aaaaaaa-[10] = 380.6484
/a-**/aaaaaaa/-a/a/aaaaaaa+/a/-*aaaaaaa-[11] = 0
+--+//aaaaaaa+*+/*-aaaaaaa/*-a-+aaaaaaa-[12] = 551.2066
-a/+a/aaaaaaa*/--/aaaaaaaa*-+/a+aaaaaaa-[13] = 308.1296
/+/-+-aaaaaaa+-a/aaaaaaaaa**+-*-aaaaaaa-[14] = 0
//-*+/aaaaaaa//*a+aaaaaaaa/a++a*aaaaaaa-[15] = 489.5392
a-a-aaaaaaa+*+-a/aaaaaaa*/*aa*aaaaaaa-[16] = 399.2122
-a++*/aaaaaaa+/aa-*aaaaaaa---/**aaaaaaa-[17] = 317.6631
--a/*aaaaaaaa++*+-aaaaaaaa+-/*+-aaaaaaa-[18] = 597.8777
*+++-/aaaaaaa/--///aaaaaaa+-+aaaaaaaaaa-[19] = 661.5933

Figure 7. Initial population (generation 0) for the simple problem of symbolic regression. For each
problem, such an initial, totally random population is generated. The value after each chromosome
indicates the fitness for the set of fitness cases shown in Table 1.

Figure 8 . Best individual of generation 0 (chromosome 19 of Figure 7). It has a fitness of 661.5933. a) The chromosome of the
individual. b) The sub-ETs codified by each gene. c) The correspondent mathematical expression after linking with addition (the
contribution of each sub-ET is shown in brackets).

S ub-E T 1 S ub-E T 3S ub-E T 2

012345678901201234567890120123456789012
*+++-/aaaaaaa/--///aaaaaaa+-+aaaaaaaaaa

/

a a a aa a

a a a aa///

/

a a aa aa

a

aaay 2022 2 +++=c)

a)

b)

14

Generation N: 1
012345678901201234567890120123456789012
*+++-/aaaaaaa/--///aaaaaaa+-+aaaaaaaaaa-[0] = 661.5933
-a++*/aaaaaaa+//a--aaaaaaa---/**aaaaaaa-[1] = 0
+-*-**aaaaaaa*/-+**aaaaaaa*+--++aaaaaaa-[2] = 380.6484
+-*-**aaaaaaa*/-+**aaaaaaa*/*a**aaaaaaa-[3] = 356.9471
+-+aaaaaaaaaa*+++-/aaaaaaa/--///aaaaaaa-[4] = 661.5933
*aa-+-aaaaaaa+a/++/aaaaaaa***+-*aaaaaaa-[5] = 567.9289
a-a-aaaaaaa+/*-a/aaaaaaa*+-*++aaaaaaa-[6] = 449.802
aa-+-aaaaaaa+a/-+/aaaaaaa+--++aaaaaaa-[7] = 961.8512
/***/+aaaaaaa*+/+-aaaaaaaa-a/-*aaaaaaaa-[8] = 470.5862
+--+//aaaaaaa+*+/*-aaaaaaa/*-a-+aaaaaaa-[9] = 551.2066
*+++-/aaaaaaa-//--/aaaaaaa+-+aaaaaaaaaa-[10] = 0
--+a*-aaaaaaa++a/*aaaaaaaa-a/-*aaaaaaaa-[11] = 487.3099
-a++*/aaaaaaa+/aa-*aaaaaaa---/**aaaaaaa-[12] = 317.6631
++a/*aaaaaaaa+-+a*-aaaaaaa++aa/aaaaaaaa-[13] = 451.464
+--+/-aaaaaaa+a/**+aaaaaaa----+/aaaaaaa-[14] = 493.5336
*/-a++aaaaaaa+/aa-*aaaaaaa---/**aaaaaaa-[15] = 356.4241
+/-*//aaaaaaa*+a//+aaaaaaa-/+*+*aaaaaaa-[16] = 493.9218
*/**+aaaaaaaa+*+/*aaaaaaaa***/-*aaaaaaa-[17] = 448.4805
+-*-**aaaaaaa*/-+**aaaaaaa*+--++aaaaaaa-[18] = 380.6484
++a/*aaaaaaaa+-+a*+aaaaaaa--/-*aaaaaaaa-[19] = 380.8585

Figure 9. The descendants of the individuals of the initial population of Figure 7. The value after
each chromosome indicates the fitness for the set of fitness cases shown in Table 1. Note that
chromosome 0 is the clone of the best individual of the previous generation. In fact, this position is
always occupied by the clone of the best individual of the previous generation.

Figure 10 . Best individual of generation 1 (chromosome 7 of Figure 9) with a fitness of 961.8512. a) Its chromosome. b) The sub-ETs
codified by each gene. c) The correspondent mathematical expression after linking with addition (the contribution of each sub-ET is
shown in brackets).

S ub-E T 1 S ub-E T 3S ub-E T 2

012345678901201234567890120123456789012
aa-+-aaaaaaa+a/-+/aaaaaaa+--++aaaaaaa

a a

a a a a a a

a

/a

/

a a

a aa

() (22 2
2

1
a

a

a
aay +





 −++=c)

a)

b)

15

Generation N: 2
012345678901201234567890120123456789012
aa-+-aaaaaaa+a/-+/aaaaaaa+--++aaaaaaa-[0] = 961.8512
*/**+aaaaaaaa*/-+**aaaaaaa***/-*aaaaaaa-[1] = 446.2061
+-*-**aaaaaaa*+a//-aaaaaaa-/+*+*aaaaaaa-[2] = 323.1036
+--+//aaaaaaa+*+/*-aaaaaaa/*-*-+aaaaaaa-[3] = 551.2066
*aa-+-aaaaaaa+a/++/aaaaaaa***+-*aaaaaaa-[4] = 567.9289
++a/*aaaaaaaa*/-+-*aaaaaaa*+--++aaaaaaa-[5] = 0
+-*-**aaaaaaa+*+/*aaaaaaaa*/*a**aaaaaaa-[6] = 386.6484
++a/*aaaaaaaa+-+/*-aaaaaaa+aa++aaaaaaaa-[7] = 466.1533
+-*-a*aaaaaaa*/-+**aaaaaaa*a*a**aaaaaaa-[8] = 194.0452
/***/+aaaaaaa*+/+-aaaaaaaa-a--*aaaaaaaa-[9] = 541.4829
+-*-+*aaaaaaa+-+a*-aaaaaaa***/-*aaaaaaa-[10] = 346.2235
--*+*-aaaaaaa*aa-+-aaaaaaaaa/-+/aaaaaaa-[11] = 467.0862
*/-+**aaaaaaa+-*-*+aaaaaaa*/*a**aaaaaaa-[12] = 672.877
aa+/aaaaaaa+a/-+/aaaaaaa*+--++aaaaaaa-[13] = 961.8512
+++/+aaaaaaa++/+-aaaaaaa-a/-*aaaaaaaa-[14] = 395.858
/***-/aaaaaaa/--///aaaaaaa+-+a-aaaaaaaa-[15] = 467.0862
*aa-+-aaaaaaa+a/++/aaaaaaa***+-*aaaaaaa-[16] = 567.9289
+-+aaaaaaaaaa*+++-/aaaaaaa/--///aaaaaaa-[17] = 661.5933
+/-*//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaa-[18] = 903.8886
*/**+aaaaaaaa+*+/*aaaaaaaa+/aa/aaaaaaaa-[19] = 423.885

Generation N: 3
012345678901201234567890120123456789012
aa+/aaaaaaa+a/-+/aaaaaaa*+--++aaaaaaa-[0] = 961.8512
*aa-+-aaaaaaa+a/-+/aaaaaaa/--///aaaaaaa-[1] = 560.9289
*aa-+-aaaaaaa-++/+-aaaaaaa-a/-*aaaaaaaa-[2] = 558.2066
+++/+aaaaaaa+a/-+aaaaaaa++--++aaaaaaa-[3] = 569.0469
/+++/+aaaaaaa*++/+-aaaaaaa-a/-*aaaaaaaa-[4] = 699.5153
+-+aa/aaaaaaa++++-/aaaaaaa***+-*aaaaaaa-[5] = 466.1533
*aa-+-aaaaaaaaa--**aaaaaaa*+--++aaaaaaa-[6] = 957.9443
--++*-aaaaaaa*a+/*-aaaaaaa+aa++aaaaaaaa-[7] = 337.7807
aaa/aaaaaaa+a+-+/aaaaaaa*+-/++aaaaaaa-[8] = 953.9443
/***/-aaaaaaa*+/+-aaaaaaaa-a--*aaaaaaaa-[9] = 0
aa-+-aaaaaaa+a/-+/aaaaaaa/--++aaaaaaa-[10] = 560.9289
*aa-+-aaaaaaa+a/++/aaaaaaa/--///aaaaaaa-[11] = 567.9289
+-+a-aaaaaaaa/***-/aaaaaaa*+--++aaaaaaa-[12] = 676.0663
+/**//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaa-[13] = 1000
*/-+**aaaaaaa+-*-*+aaaaaaa*/*a**aaaaaaa-[14] = 672.877
/***/+aaaaaaa/+*+/+aaaaaaa-a*/--aaaaaaa-[15] = 498.3734
+/-*//aaaaaaa*/a+-*aaaaaaa*+--++aaaaaaa-[16] = 0
--*+--aaaaaaa*/a-+-aaaaaaa/a/-+/aaaaaaa-[17] = 506.1233
++a/*aaaaaaaa+-a-+-aaaaaaa-a*-+/aaaaaaa-[18] = 815.7772
+a//-aaaaaaa+a/-+/aaaaaaa-/++*aaaaaaa-[19] = 412.5237

Figure 11. The chromosomes of two populations for the simple problem of symbolic regression.
The value after each chromosome indicates the fitness for the set of fitness cases shown in
Table 1. In generation 2 , none of the individuals surpassed the best of the previous generation.
In generation 3 , a perfect solution with maximum fitness was found (chromosome 13).

16

Figure 12 . Perfect solution found in generation 3 (chromosome 13 of Figure 11). It has the maximum value 1000 of fitness. a) The
chromosome of this individual. b) The sub-ETs codified by each gene. c) The correspondent mathematical expression after linking
with addition (the contribution of each sub-ET is shown in brackets).

thermore, I will also show that the explicit use of constants
is, in fact, better avoided, for GEP produces better results
when the numerical constants are not explicitly used and the
system is left to invent new ways of representing them.

3.1. Function finding and the creation of numerical
constants

Here I show two different approaches to the problem of con-
stant creation: one without using ephemeral random con-
stants, and another using ephemeral random constants. In
the first approach, a special facility to handle numerical con-
stants was implemented. In the second approach, the sys-
tem creates them or finds alternative ways of representing
them on its own.

Numerical constants can be easily implemented in GEP
(Ferreira 2001). For that an additional domain Dc was cre-
ated. Structurally, the Dc comes after the tail, has a length
equal to t, and consists of the symbols used to represent the
ephemeral random constants. Therefore, another region with
its boundaries and its own alphabet was created in the chro-
mosome.

For each gene the constants are randomly generated at
the beginning of a run, but their circulation is guaranteed by
the genetic operators. Besides, a special mutation operator
was created that allows the permanent introduction of varia-
tion in the set of random constants. A domain specific IS
transposition was also created in order to guarantee the ef-
fective shuffling of constants. Note that the basic genetic

operators are not affected by the Dc: it is only necessary to
keep the boundaries of each region and not mix different
alphabets.

Consider the single-gene chromosome with an h = 11
(the Dc is shown in bold):

01234567890123456789012345678901234
*?+?/*a-*/*a????a??a??a 281983874486 (3.1)

where ‘?’ represents the ephemeral random constants. The
expression of this kind of chromosomes is done exactly as
before, obtaining:

S ub-E T 1 S ub-E T 3S ub-E T 2

012345678901201234567890120123456789012
+/**//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaa

a a a a a a

a

/

/ /

a/

a a

a aa a a a a a a

a

a)

b)

12321 222 ++=++++= aaaaaayc)

17

Then the ?’s in the ET are replaced from left to right and from
top to bottom by the symbols in Dc, obtaining:

2

8

1

8 39

/

/ a

a

a

The values corresponding to these symbols are kept in an
array. For simplicity, the number represented by the numeral
indicates the order in the array. For instance, for the 10 ele-
ment array,

A = {-2.829, 2.55, 2.399, 2.979, 2.442, 0.662, 1.797,
 -1.272, 2.826, 1.618},

the chromosome 3.1 above gives:

So, in this section, we will compare the two approaches
searching a solution to a relatively complex problem. The
test function chosen is the following ‘V’ shaped function:

(3.2)

where a is the independent variable and e is the irrational
number 2.71828183. For both approaches, we will compare
the results obtained for 100 independent runs of 5000 gen-
erations each (see Table 4 below).

3.1.1. First approach: direct manipulation of rational
constants

For the first approach, the function set contained, besides
the expected functions, several extraneous functions, being
in this case F = {+, -, *, /, L, E, K, ~, S, C} (‘L’ represents the
natural logarithm, ‘E’ represents ex, ‘K’ represents the loga-
rithm of base 10, ‘~’ represents 10x, ‘S’ represents the sine
function, and ‘C’ represents the cosine), T = {a, ?}, the set of
random constants R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and the
ephemeral random constant ‘?’ ranged over the interval [-1, 1].
The set of 20 random fitness cases chosen from the interval
[-1,1] are shown in Table 3 and the fitness was evaluated by
a variant of equation 2.12 (Ferreira 2001):

(3.3)

If (the precision) less or equal to 0.01%,

then the precision is equal to zero and f
(i,j)

= M. For this prob-
lem, M = 100% and C

t
 = 20; therefore, f

max
 = 2000.

Table 3
Set of 20 random fitness cases used in the finding of the ‘V’
shaped function.

-0 .2639725157548009

0.0578905532656938

0.3340252901096346

-0.2363345775644623

-0.8557443825668047

-0.0194437136332785

-0.1921343881833043

0.5293079101246271

-0.007889741187284598

0.4389698049506311

-0.1075592926980396

-0.2745569943771633

-0.05953332196045281

0.3844929939583523

-0.8749230207363339

-0.236546636250546

-0.1678759417045577

0.9506821818220914

0.9469791595773622

0.6393399100595915

3.194980662652764

1.990520017259985

8.396637039972868

3.070889769728257

5.879467636957033

-0.7753263223284588

2.834702257744086

12.21547266421373

-2.498039834186359

10.40717348588088

2.094136356459081

3.239272780108398

1.197012847673475

9.355807691898551

6.006424530013026

3.071897290438372

2.674400531309863

22.48196398441491

22.37501611873555

14.5701285332337

a f(a)

18

In this experiment, 100 identical runs were made. The
parameters used per run are shown in the first column of
Table 4. The best solution was found in run 79 after 3619
generations. Figure 13 shows the progression of average
fitness of the population and the fitness of the best indi-
vidual for run 79 of this experiment. The best of run solution
in terms of R-square is shown below (the sub-ETs are linked
by addition):

Gene 0: L*~*+/aa?a??a2132990
 A

0
 = {0.565, 0.203, 0.613, 0.219, 0.28,

 0.25, 0.48, 0.427, 0.821, 0.127}

Gene 1: E-+-*?aaaaaaa7332660
 A

1
 = {0.031, 0.046, 0.696, 0.643, 0.528,

 0.417, 0.978, 0.811, 0.637, 0.988}

Gene 2: ~Saaa+??aa??a9109969
 A

2
 = {0.515, 0.466, 0.254, 0.219, 0.425,

 0.942, 0.306, 0.619, 0.821, 0.262}

Gene 3: ~SSaES?????aa5420661
 A

3
 = {0.595, 0.547, 0.525, 0.219, 0.297,

 0.387, 0.508, 0.695, 0.728, 0.415} (3.4)

Table 4
General settings used in the finding of the ‘V’ shaped function with and without random constants.

It has a fitness of 1975.264 and an R-square of 0.9999439
evaluated over the set of 20 fitness cases and an R-square of
0.9999075 evaluated against a test set of 100 random
points. Its expression is shown in Figure 14. This model is
a very good approximation to the target function as both
the R-square and the comparison of the plots for the target
function and the model show (Figure 15).

It is worth noticing that, despite integrating constants in
the evolved solutions, the constants are very different from
the expected ones. Indeed, GEP (and I believe, all genetic
algorithms) can find the expected constants with a preci-
sion to the third or fourth decimal place when the target
functions are simple polynomial functions with rational co-
efficients and/or when we could guess pretty accurately the
function set, otherwise a very creative solution would be
found. I don’t think this should be seen as a weakness of
evolutionary algorithms for “constants” is apparently just
another word for mathematical expression.

3.1.2. Second approach: creation of rational constants
from scratch

For the second approach, the evolution of a model without
directly using random constants, the set of fitness cases

19

Figure 13 . Progression of average fitness of the population and the fitness of the best
individual of run 79 of the experiment summarized in Table 4, column 1 (function finding with
random constants).

Figure 14 . Model 3.4 evolved by GEP using the facility for manipulation of random constants. a) The sub-ETs codified by each gene.
b) The correspondent mathematical expression after linking with addition (the contribution of each sub-ET is shown in square brackets).

20

Figure 15 . Comparison of the target function with the model
3.4 evolved by GEP using random constants (Figure 14).
The R-square was evaluated over the test set of 100 ran-
dom points and is equal to 0.9999075.

and the function set were as in section 3.1.2, and T = {a}.
The parameters used per run are shown in the second col-
umn of Table 4. In this experiment of 100 identical runs, the
best solution was found in generation 1210 of run 63:

0123456789012
+EL-*/aaaaaaa
~a+E/Laaaaaaa
+C+C+Eaaaaaaa
*C~+aSaaaaaaa
~a-L~+aaaaaaa (3.5)

Figure 16 . Model evolved by GEP without explicitly using random constants. a) The model in Karva notation. b) The sub-ETs codified
by each gene. c) The correspondent mathematical expression after linking with addition (the contribution of each sub-ET is shown in
square brackets).

It has a fitness of 1982.488 and an R-square of 0.99996922
evaluated over the set of 20 fitness cases and an R-square of
0.9999460 evaluated against the same test set of section 3.1.1,
and thus is better than the model 3.4 evolved with the facility
for creation of random constants. This model is also an al-
most perfect match for the target function. Its expression is
shown in Figure 16.

Once again, the plots of the target function and the model
evolved by GEP are compared in Figure 17.

It is instructive to compare the results obtained in both
approaches. Not only the model 3.5 evolved without random

Figure 17 . Comparison of the target function with the model
3.5 evolved by GEP without explicitly using random con-
stants (Figure 16). The R-square was evaluated over the
test set of 100 random points and is equal to 0.9999460.

S ub-E T 1 S ub-E T 3 S ub-E T 4 S ub-E T 5S ub-E T 2

01234567890120123456789012012345678901201234567890120123456789012
+EL-*/aaaaaaa~a+E/Laaaaaaa+C+C+Eaaaaaaa*C~+aSaaaaaaa~a-L~+aaaaaa a

a aa a

E

C

C

~

S a

a

a

C

aa

a aa

E L

/

~

a

~

a

() aaaaa aaeaaaey 1 01 0sinco s2co sco s1 0ln 21 +⋅+++++++= −

a)

b)

c)

-10

-5

0

5

10

15

20

25

-1 ,2 -0 ,6 0 0 ,6 1 ,2

Targe t

M ode l

21

constants was better than the model evolved with random
constants, but also the average best-of-run fitness was su-
perior in the second approach: 1934.619 compared to 1850.476
(see Table 4). Thus, in real-world applications where com-
plex realities are modeled, of which it is impossible to infer
neither the type nor the range of the numerical constants,
and where most of the times we are unable to guess the exact
function set, it is more appropriate to let the system model
the reality on its own without explicitly using random con-
stants. Perhaps the models would be unconventional com-
paratively to human-created ones, but they allow, nonethe-
less, the extraction of knowledge because the programs
evolved by GEP are simple and accessible. It is worth notic-
ing that some learning algorithms like neural networks do
not allow knowledge extraction from their models whereas
others produce so complicated models that their analysis is
considerably limited.

3.2. Function finding on a five-dimensional parameter
space

The objective of this section is to show how GEP can be
used to model complex realities with high accuracy. The test
function chosen is the following five parameter function:

(3.6)

where a, b, c, d, and e are the independent variables.

Figure 18 . Model evolved by GEP to the 5-parameter function 3.6. a) The model in Karva notation. b) The sub-ETs codified
by each gene. c) The correspondent mathematical expression after linking with addition (the contribution of each sub-ET is
shown in square brackets).

Consider we are given a sampling of the numerical val-
ues from this function over 100 random points in the interval
[-1,1] and we wanted to find a function fitting those values
within 0.01% of the correct value. The fitness was evalu-
ated by equation 3.3, being M = 100%. Thus, for C

t
 = 100,

f
max

 = 10000.
The domain of this problem suggests, besides the ar-

ithmetical functions, the use of sqrt(x), log(x), 10x, sin(x),
cos(x) and tan(x) in the function set, which corresponds
respectively to Q, K, ~, S, C, and G. Thus, for this problem,
F = {+, -, *, /, Q, K, ~, S, C, G} and T consisted obviously of
the independent variables {a, b, c, d, e}.

For this problem, I chose 3-genic chromosomes encod-
ing sub-ETs with a maximum of 19 nodes. The sub-ETs were
posttranslationally linked by addition. The parameters used
per run are summarized in Table 5. I used the software Auto-
matic Problem Solver (APS) to model this function because
it allows the easy optimization of intermediate solutions and
the easy testing of the evolved models against a test set. In
one run a very good solution, with an R-square of 0.9999913
evaluated over a test set of 200 random points, was found:

0123456789012345678
SS*-GKcaCbbccbeabdb
aC--SKaeGceadddabad
G-de*add+adedabdeaa (3.7)

Its expression is shown in Figure 18. This model is a very
good approximation to the target function 3.6 as the high

S ub-E T 1 S ub-E T 3S ub-E T 2

012345678901234567801234567890123456780123456789012345678
SS*-GKcaCbbccbeabdbaC--SKaeGceadddabadG-de*add+adedabdea a

a

ed

G

c a

b

C

K

G

S

S

a)

b)

c)

)tan (tanco slogs ins in edaacby −++⋅−=

22

Table 5
Parameters for the problem of function finding on a
five-dimensional parameter space.

value for the R-square (almost 1) indicates. With APS we can
further convert the evolved Karva programs into a more con-
ventional computer program. For instance, the model 3.7
above can be automatically translated into the following C++
function:

double APSCfunction(double d[])
{

double dblTemp = 0;
dblTemp+=sin(sin(((log10(cos(d[1]))-d[2])*tan(d[0]))));
dblTemp += d[0];
dblTemp += tan((d[3]-d[4]));
return dblTemp;

}

Note that the term encoded in the last gene matches exactly
the second term of the target function. However, a very un-
conventional and non-parsimonious alternative was found
to express the first term of the target function. But the model

evolved by GEP is, nonetheless, extremely accurate as the
high value for the R-square indicates.

4. Summary

On the one hand, the implementation details of the learning
algorithm, gene expression programming, were thoroughly
presented, allowing its easy understanding and implementa-
tion. On the other hand, the workings of the algorithm were
analyzed step-by-step with a simple problem of symbolic
regression. Furthermore, the question of constant creation
in symbolic regression was discussed comparing two differ-
ent approaches to solve this problem: one with the explicit
use of rational constants, and another without them. The
results presented suggest that the latter is best, not only in
terms of the accuracy of the evolved models and overall
performance evaluated in terms of average best-of-run fit-
ness, but also because the search space is much smaller,
reducing greatly the complexity of the system. Moreover, we
also saw how GEP efficientely searched for a solution to a
complex problem on a five-dimensional parameter space with
several extraneous functions, finding an almost perfect so-
lution with an R-square of 0.9999913.

References

1. Cramer, N. L., A representation for the adaptive genera-
tion of simple sequential programs. In J. J. Grefenstette, ed.,
Proceedings of the First International Conference on Ge-
netic Algorithms and Their Applications, Erlbaum, 1985.

2. Dawkins, R., River out of Eden, Weidenfeld & Nicolson, 1995.

3. Ferreira, C., 2001. Gene Expression Programming: A New
Adaptive Algorithm for Solving Problems. Complex Systems,
forthcoming.

4. Goldberg, D. E., Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, 1989.

5. Holland, J. H., Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Biol-
ogy, Control, and Artificial Intelligence, University of Michi-
gan Press, 1975 (second edition: MIT Press, 1992).

6. Koza, J. R., Genetic Programming: On the Programming
of Computers by Means of Natural Selection, Cambridge,
MA: MIT Press, 1992.

7. Mitchell, M., An Introduction to Genetic Algorithms, MIT
Press, 1996.

