
1

Function Finding and the Creation of Numerical Constants in
Gene Expression Programming

Cândida Ferreira
Gepsoft, 37 The Ridings,
Bristol BS13 8NU, UK
candidaf@gepsoft.com

www.gene-expression-programming.com/author.asp

Gene expression programming is a genotype/phenotype system that evolves computer programs of
different sizes and shapes (the phenotype) encoded in linear chromosomes of fixed length (the geno-
type). The chromosomes are composed of multiple genes, each gene encoding a smaller sub-program.
Furthermore, the structural and functional organization of the linear chromosomes allows the uncon-
strained operation of important genetic operators such as mutation, transposition, and recombination.
In this work, three function finding problems, including a high dimensional time series prediction task,
are analyzed in an attempt to discuss the question of constant creation in evolutionary computation by
comparing two different approaches to the problem of constant creation. The first algorithm involves a
facility to manipulate random numerical constants, whereas the second finds the numerical constants
on its own or invents new ways of representing them. The results presented here show that evolutionary
algorithms perform considerably worse if numerical constants are explicitly used.

1. Introduction

Genetic programming (GP) evolves computer programs by
genetically modifying nonlinear entities with different sizes
and shapes (Koza 1992). These nonlinear entities can be rep-
resented as diagrams or trees. Gene expression programming
(GEP) is an extension to GP that also evolves computer pro-
grams of different sizes and shapes, but the programs are
encoded in a linear chromosome of fixed length (Ferreira
2001). One strength of the GEP approach is that the creation
of genetic diversity is extremely simplified as genetic opera-
tors work at the chromosome level. Indeed, due to the struc-
tural organization of GEP chromosomes, the implementation
of high-performing search operators is extremely simplified,
as any modification made in the genome always results in valid
programs. Another strength of GEP consists of its unique,
multigenic nature which allows the evolution of complex pro-
grams composed of several simpler sub-programs.

It is assumed that the creation of floating-point constants
is necessary to do symbolic regression in general (see, e.g.,
Banzhaf 1994 and Koza 1992). Genetic programming solved
the problem of constant creation by using a special terminal
named “ephemeral random constant” (Koza 1992). For each
ephemeral random constant used in the trees of the initial
population, a random number of a special data type in a speci-

fied range is generated. Then these random constants are
moved around from tree to tree by the crossover operator.

Gene expression programming solves the problem of
constant creation differently (Ferreira 2001). GEP uses
an extra terminal “?” and an extra domain Dc composed
of the symbols chosen to represent the random constants.
For each gene, the random constants are generated dur-
ing the inception of the initial population and kept in an
array. The values of each random constant are only as-
signed during gene expression. Furthermore, a special op-
erator is used to introduce genetic variation in the avail-
able pool of random constants by mutating the random
constants directly. In addition, the usual operators of GEP
plus a Dc specific transposition guarantee the effective
circulation of the numerical constants in the population.
Indeed, with this scheme of constants manipulation, the
appropriate diversity of numerical constants can be gen-
erated at the beginning of a run and maintained easily af-
terwards by the genetic operators.

Notwithstanding, in this work it is shown that evolution-
ary algorithms do symbolic regression more efficiently if
the problem of constant creation is handled by the algorithm
itself. In other words, the special facilities for manipulating
random constants are indeed unnecessary to solve problems
of symbolic regression.

7th Online World Conference on Soft Computing in Industrial Applications, September 23 - October 4, 2002

2

2. Genetic algorithms with tree representations

All genetic algorithms use populations of individuals, select
individuals according to fitness, and introduce genetic vari-
ation using one or more genetic operators (see, e.g., Mitchell
1996). In recent years different systems have been devel-
oped so that this powerful algorithm inspired in natural evo-
lution could be applied to a wide spectrum of problem do-
mains (see, e.g., Mitchell 1996 for a review of recent work
on genetic algorithms and Banzhaf et al. 1998 for a review
of recent work on GP).

Structurally, genetic algorithms can be subdivided in three
fundamental groups: i) Genetic algorithms with individuals
consisting of linear chromosomes of fixed length devoid of
complex expression. In these systems, replicators (chromo-
somes) survive by virtue of their own properties. The algo-
rithm invented by Holland (1975) belongs to this group and
is known as genetic algorithm or GA; ii) Genetic algorithms
with individuals consisting of ramified structures of differ-
ent sizes and shapes and, therefore, capable of assuming a
richer number of functionalities. In these systems, replicators
(ramified structures) also survive by virtue of their own prop-
erties. The algorithm invented by Cramer (1985) and later
developed by Koza (1992) belongs to this group and is known
as genetic programming or GP; iii) Genetic algorithms with
individuals encoded in linear chromosomes of fixed length
which are afterwards expressed as ramified structures of dif-
ferent sizes and shapes. In these systems, replicators (chro-
mosomes) survive by virtue of causal effects on the pheno-
type (ramified structures). The algorithm invented by my-
self (Ferreira 2001) belongs to this group and is known as
gene expression programming or GEP.

GEP shares with GP the same kind of ramified structure
and, therefore, can be applied to the same problem domains.
However, the logistics of both systems differ significantly
and the existence of a real genotype in GEP allows the un-
precedented manipulation and exploration of more complex
systems. Below are briefly highlighted some of the differ-
ences between GEP and GP.

2.1. Genetic programming

As simple replicators, the ramified structures of GP are tied
up in their own complexity: on the one hand, bigger, more
complex structures are more difficult to handle and, on the
other, the introduction of genetic variation can only be done
at the tree level and, therefore, must be done carefully so
that valid structures are created. A special kind of tree crosso-
ver is practically the only source of genetic variation used in
GP for it allows the exchange of sub-trees and, therefore,
always produces valid structures. Indeed, the implementa-
tion of high-performing operators, like the equivalent of natu-
ral point mutation, is unproductive as most mutations would
result in syntactically invalid structures. Understandingly, the
other genetic operators described by Koza (1992) – muta-
tion and permutation – also operate at the tree level.

2.2. Gene expression programming

The phenotype of GEP individuals consists of the same kind
of diagram representation used by GP. However, these com-
plex phenotypes are encoded in simpler, linear structures of
fixed length – the chromosomes. Thus, the main players in
GEP are the chromosomes and the ramified structures or
expression trees (ETs), the latter being the expression of the
genetic information encoded in the former. The decoding of
GEP genes implies obviously a kind of code and a set of
rules. The genetic code is very simple: a one-to-one rela-
tionship between the symbols of the chromosome and the
functions or terminals they represent. The rules are also very
simple: they determine the spatial organization of the func-
tions and terminals in the ETs and the type of interaction
between sub-ETs in multigenic systems.

In GEP there are therefore two languages: the language
of the genes and the language of ETs. However, thanks to
the simple rules that determine the structure of ETs and their
interactions, it is possible to infer immediately the pheno-
type given the sequence of the genotype, and vice versa.
This bilingual and unequivocal system is called Karva lan-
guage. The details of this new language are given below.

2.2.1. Open reading frames and genes

In GEP, the genome or chromosome consists of a linear, sym-
bolic string of fixed length composed of one or more genes.
Despite their fixed length, GEP chromosomes code for ETs
with different sizes and shapes, as will next be shown.

The structural organization of GEP genes is better un-
derstood in terms of open reading frames (ORFs). In biol-
ogy, an ORF or coding sequence of a gene begins with the
“start” codon, continues with the amino acid codons, and
ends at a termination codon. However, a gene is more than
the respective ORF, with sequences upstream of the start codon
and sequences downstream of the stop codon. Although in
GEP the start site is always the first position of a gene, the
termination point does not always coincide with the last posi-
tion of a gene. It is common for GEP genes to have noncoding
regions downstream of the termination point. (For now these
noncoding regions will not be considered because they do not
interfere with the product of expression.)

Consider, for example, the algebraic expression:

(2.1)

It can also be represented as a diagram or ET:

3

where “Q” represents the square root function.
This kind of diagram representation is in fact the pheno-

type of GEP chromosomes, being the genotype easily in-
ferred from the phenotype as follows:

0123456789
+/Q*c-abde (2.2)

which is the straightforward reading of the ET from left to
right and from top to bottom (exactly as we read a page of
text). The expression (2.2) is an ORF, starting at “+” (posi-
tion 0) and terminating at “e” (position 9). These ORFs are
called K-expressions (from Karva notation).

Consider another ORF, the following K-expression:

012345678901
*-/Qb+b+aaab (2.3)

Its expression as an ET is also very simple and straightfor-
ward. To express correctly the ORF, the rules governing the
spatial distribution of functions and terminals must be fol-
lowed. The start position (position 0) in the ORF corresponds
to the root of the ET. Then, below each function are attached
as many branches as there are arguments to that function.
The assemblage is complete when a baseline composed only
of terminals (the variables or constants used in a problem) is
formed. So, for the K-expression (2.3) above, the following
ET is formed:

Looking at the structure of GEP ORFs only, it is difficult
or even impossible to see the advantages of such a represen-
tation, except perhaps for its simplicity and elegance. How-
ever, when ORFs are analyzed in the context of a gene, the
advantages of this representation become obvious. As stated
previously, GEP chromosomes have fixed length, and they
are composed of one or more genes of equal length. There-
fore the length of a gene is also fixed. Thus, in GEP, what
varies is not the length of genes but the length of the ORFs.
Indeed, the length of an ORF may be equal to or less than
the length of the gene. In the first case, the termination point
coincides with the end of the gene, and in the last case, the
termination point is somewhere upstream of the end of the
gene.

As will next be shown, the junk sequences of GEP genes
are extremely important for they allow the modification of

the genome using any genetic operator without restrictions,
always producing syntactically correct programs. The sec-
tion proceeds with the study of the structural organization of
GEP genes in order to show how these genes invariably code
for syntactically correct programs and why they allow an
unconstrained application of any genetic operator.

2.2.2. Structural organization of genes

GEP genes are composed of a head and a tail. The head con-
tains symbols that represent both functions and terminals,
whereas the tail contains only terminals. For each problem,
the length of the head h is chosen, whereas the length of the
tail t is a function of h and maximum arity n, and is evalu-
ated by the equation:

 t = h (n-1) + 1 (2.4)

Consider a gene for which the set of functions consists
of F = {Q, *, /, -, +} and the set of terminals T = {a, b}. In
this case, n = 2; and if we chose an h = 15, then t = 16. Thus,
the length of the gene g is 15+16=31. One such gene is shown
below (the tail is shown in bold):

0123456789012345678901234567890
/aQ/b*ab/Qa*b*- ababaababbabbbba (2.5)

It codes for the following ET with only eight nodes:

Note that the ORF ends at position 7 whereas the gene ends
at position 30.

Suppose now a mutation occurred at position 2, chang-
ing the “Q” into “+”. Then the following gene is obtained:

0123456789012345678901234567890
/a+/b*ab/Qa*b*- ababaababbabbbba (2.6)

In this case, its expression gives a new ET with 18 nodes.
Note that the termination point shifts 10 positions to the right
(position 17).

Obviously the opposite might also happen, and the ORF
can be shortened. For example, consider again gene (2.5)
above, and suppose a mutation occurred at position 5, chang-
ing the “*” into “b”, obtaining:

4

0123456789012345678901234567890
/aQ/bbab/Qa*b*- ababaababbabbbba (2.7)

Its expression results in a new ET with six nodes. Note that
the ORF ends at position 5, shortening the parental ET in
two nodes.

So, despite their fixed length, GEP genes have the po-
tential to code for ETs of different sizes and shapes, being
the simplest composed of only one node (when the first ele-
ment of a gene is a terminal) and the biggest composed of as
many nodes as the length of the gene (when all the elements
of the head are functions with maximum arity).

It is evident from the examples above, that any modifi-
cation made in the genome, no matter how profound, always
results in a structurally correct ET as long as the structural
organization of genes is maintained. Indeed, the implemen-
tation of high-performing genetic operators in GEP is a child’s
play, and Ferreira (2001) describes seven: point mutation,
RIS and IS transposition, two-point and one-point recombi-
nation, gene transposition and gene recombination.

2.2.3. Multigenic chromosomes

GEP chromosomes are usually composed of more than one
gene of equal length. For each problem or run, the number
of genes, as well as the length of the head, are a priori cho-
sen. Each gene codes for a sub-ET and the sub-ETs interact
with one another forming a more complex multi-subunit ET.

Consider, for example, the following chromosome with
length 45, composed of three genes (genes are shown sepa-
rately):

012345678901234
Q/*b+Qa babaabaa
-abQ/*+ bababbab
**-*bb/ babaaaab (2.8)

It has three ORFs, and each ORF codes for a sub-ET. Posi-
tion 0 marks the start of each gene. The end of each ORF,
though, is only evident upon construction of the respective
sub-ET. In this case, the first ORF ends at position 8; the
second ORF ends at position 2; and the last ORF ends at
position 10. Thus, GEP chromosomes are composed of one
or more ORFs, each ORF coding for a structurally and func-
tionally unique sub-ET. Depending on the problem at hand,
the sub-ETs encoded by each gene may be selected indi-
vidually according to their respective fitness (for example,
in problems with multiple outputs), or they may form a more
complex, multi-subunit ET where individual sub-ETs inter-
act with one another by a particular kind of posttranslational
interaction or linking. For instance, algebraic sub-ETs are
usually linked by addition or multiplication whereas Boolean
sub-ETs are usually linked by OR, AND, or IF.

3. Function finding and the creation of
numerical constants

In this section, after a brief presentation of the facility for
the explicit handling of random numerical constants in GEP,
the problem of constant creation is discussed by comparing
the performance of two different algorithms. The first ma-
nipulates explicitly the numerical constants and the second
solves the problem of constant creation in symbolic regres-
sion by creating constants from scratch or by inventing new
ways of representing them.

3.1. Manipulating numerical constants in gene
expression programming

Numerical constants can be easily implemented in GEP
(Ferreira 2001). For that an additional domain Dc was cre-
ated in the gene. Structurally, the Dc comes after the tail, has
a length equal to t, and is composed of the symbols used to
represent the random constants. Therefore, another region
with defined boundaries and its own alphabet is created in
the gene.

For each gene the constants are randomly generated at
the beginning of a run, but their circulation is guaranteed by
the usual genetic operators of mutation, transposition, and
recombination. Besides, a special mutation operator allows
the permanent introduction of variation in the set of random
constants and a domain specific IS transposition guarantees
a more generalized shuffling of constants.

Consider the single-gene chromosome with an h = 11
(the Dc is shown in bold):

01234567890123456789012345678901234

*?+?/*a-*/*a????a??a??a 281983874486 (3.1)

where “?” represents the random constants. The expression of
this kind of chromosome is done exactly as before, giving:

5

Then the ?’s in the ET are replaced from left to right and
from top to bottom by the symbols in Dc, obtaining:

The values corresponding to these symbols are kept in an
array. For simplicity, the number represented by the numeral
indicates the order in the array. For instance, for the 10 ele-
ment array,

A = {-2.829, 2.55, 2.399, 2.979, 2.442,
 0.662, 1.797, -1.272, 2.826, 1.618},

the chromosome (3.1) above gives:

3.2. Two approaches to the problem of constant creation

The comparison between the two approaches (with and with-
out the facility to manipulate random constants) was made
on three different problems. The first is a problem of se-
quence induction requiring integer constants. The nth term
N of the chosen sequence is given by the formula:

(3.2)

where a
n
 consists of the nonnegative integers. This sequence

was chosen because it can be exactly solved and therefore

can provide an accurate measure of performance in terms of
success rate.

The second is a problem of function finding requiring
floating-point constants. In this case, the following “V”
shaped function was chosen:

 y = 4.251a2 + ln(a2) + 7.243ea (3.3)

where a is the independent variable and e is the irrational
number 2.71828183. Problems of this kind cannot be exactly
solved by evolutionary algorithms and, therefore, the perform-
ance of both approaches is compared in terms of average best-
of-run fitness and average best-of-run R-square.

The third is the well-studied benchmark problem of pre-
dicting sunspots (Weigend et al. 1992). In this case, 100
observations of the Wolfer sunspots series were used (Table
1) with an embedding dimension of 10 and a delay time of
one. Again, the performance of both approaches is compared
in terms of average best-of-run fitness and R-square.

2

8

1

8 39

/

/ a

a

a

2.399

2.826

1.618 2.826 2.979

2.55

/

/ a

a

a

12345 234 ++++= nnnn aaaaN

Table 1
Wolfer sunspots series (read by rows).

3.2.1. Setting the system

For the sequence induction problem, the first 10 positive
integers a

n
 and their corresponding term N were used as fit-

ness cases. The fitness function was based on the relative
error with a selection range of 20% and maximum precision
(0% error), giving maximum fitness f

max
= 200 (Ferreira 2001).

For the “V” shaped function problem, a set of 20 ran-
dom fitness cases chosen from the interval [-1, 1] was used.
The fitness function used was also based on the relative er-
ror but in this case a selection range of 100% was used, giv-
ing f

max
= 2000.

For the time series prediction problem, using an embed-
ding dimension of 10 and a delay time of one, the sunspots
series presented in Table 1 result in 90 fitness cases. In this
case, a wider selection range of 1000% was chosen, giving
f
max

= 90,000.
In all the experiments, the selection was made by rou-

lette-wheel sampling coupled with simple elitism and the
performance was evaluated over 100 independent runs. The
six experiments are summarized in Table 2.

101 82 66 35 31 7 20 92
154 125 85 68 38 23 10 24

83 132 131 118 90 67 60 47
41 21 16 6 4 7 14 34
45 43 48 42 28 10 8 2

0 1 5 12 14 35 46 41
30 24 16 7 4 2 8 17
36 50 62 67 71 48 28 8
13 57 122 138 103 86 63 37
24 11 15 40 62 98 124 96
66 64 54 39 21 7 4 23
55 94 96 77 59 44 47 30
16 7 37 74

6

3.2.2. First approach: Direct manipulation of numerical
constants

To solve the sequence induction problem using random con-
stants, F = {+, -, *}, T = {a, ?}, the set of integer random
constants R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and “?” ranged
over the integers 0, 1, 2, and 3. The parameters used per run
are shown in the first column of Table 2. In this experiment,
the first perfect solution was found in generation 45 of run 9
(the sub-ETs are linked by addition):

Gene 0:
*-aa+-a?aaa??1742174
A

0
 = {0, 0, 2, 3, 0, 2, 1, 1, 1, 3}

Gene 1:
++*/+-?aaa???4460170
A

1
 = {3, 0, 2, 2, 1, 3, 1, 0, 0, 1}

Gene 2:
*a**++aa?aa??4101213
A

2
 = {1, 2, 3, 3, 2, 2, 0, 1, 1, 2}

Gene 3:
**+--+?aaa???2637797
A

3
 = {0, 0, 2, 3, 3, 3, 0, 0, 1, 0}

Gene 4:
+?*++?aaaa?a?2890192
A

4
 = {1, 1, 0, 1, 1, 3, 1, 0, 0, 2}

Gene 5:
-+-/*-?aa?a?a8147432
A

5
 = {0, 0, 0, 2, 0, 2, 2, 0, 0, 0}

Gene 6:
aa?aa?a??2314518
A

6
 = {0, 2, 3, 2, 3, 1, 3, 2, 3, 0}

which corresponds to the target sequence (3.2).
As shown in the first column of Table 2, the probability

of success for this problem is 16%, considerably lower than
the 81% of the second approach (see Table 2, column 2). It
is worth emphasizing that only the prior knowledge of the
solution enabled us, in this case, to choose correctly the type
and the range of the random constants.

To find the “V” shaped function using random constants
F = {+, -, *, /, L, E, K, ~, S, C} (“L” represents the natural
logarithm, “E” represents ex, “K” represents the logarithm
of base 10, “~” represents 10x, “S” represents the sine func-
tion, and “C” represents the cosine) and T = {a, ?}. The set
of rational random constants R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
and “?” ranged over the interval [-1, 1]. The parameters used

Table 2
General settings used in the sequence induction (SI), the “V” function, and sunspots (SS) problems. The “*” indicates the explicit
use of random constants.

SI* SI V* V SS* SS

Number of runs 100 100 100 100 100 100

Number of generations 100 100 5000 5000 5000 5000

Population size 100 100 100 100 100 100

Number of fitness cases 10 10 20 20 90 90

Function set + - * / + - * / + - * / L E K ~ S C + - * / L E K ~ S C 4 (+ - * /) 4 (+ - * /)

Terminal set a, ? a a, ? a a - j, ? a - j

Random constants array length 10 -- 10 -- 10 --

Random constants range {0, 1, 2, 3} -- [-1,1] -- [-1,1] --

Head length 6 6 6 6 8 8

Number of genes 7 7 5 5 3 3

Linking function + + + + + +

Chromosome length 140 91 100 65 78 51

Mutation rate 0.044 0.044 0.044 0.044 0.044 0.044

One-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Two-point recombination rate 0.3 0.3 0.3 0.3 0.3 0.3

Gene recombination rate 0.1 0.1 0.1 0.1 0.1 0.1

IS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

IS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

RIS transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

RIS elements length 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Gene transposition rate 0.1 0.1 0.1 0.1 0.1 0.1

Random constants mutation rate 0.01 -- 0.01 -- 0.01 --

Dc specific transposition rate 0.1 -- 0.1 -- 0.1 --

Dc specific IS elements length 1,2,3 -- 1,2,3 -- 1,2,3 --

Selection range 20% 20% 100% 100% 1000% 1000%

Precision 0% 0% 0% 0% 0% 0%

Average best-of-run fitness 179.827 197.232 1914.8 1931.84 86215.27 89033.29

Average best-of-run R-square 0.977612 0.999345 0.957255 0.995340 0.713365 0.811863

Success rate 16% 81% -- -- -- --

7

per run are shown in the third column of Table 2. The best
solution, found in run 50 after 4584 generations, is shown
below (the sub-ETs are linked by addition):

Gene 0:
L*L*ECaa??a??8534167
A

0
 = {0.189, 0.13, 0.753, 0.548, 0.277,

 0.257, 0.743, 0.46, 0.066, 0.801}

Gene 1:
~S/aC-??aa?aa5477773
A

1
 = {0.337, 0.99, 0.536, 0.406, 0.283,

 0.95, 0.968, 0.108, 0.672, 0.644}

Gene 2:
~*/a*aa???a?a1437777
A

2
 = {0.247, 0.929, 0.779, 0.89, 0.926,

 0.24, 0.667, 0.254, 0.518, 0.927}

Gene 3:
-C*?/*a?aaa??4725239
A

3
 = {0.792, 0.019, 0.472, 0.005, 0.682,

 0.605, 0.094, 0.357, 0.074, 0.713}

Gene 4:
+E+*EE?a?a???4233680
A

4
 = {0.883, 0.768, 0.899, 0.311, 0.981,

 0.845, 0.428, 0.308, 0.519, 0.381} (3.4)

It has a fitness of 1989.566 and an R-square of 0.9997001
evaluated over the set of 20 fitness cases and an R-square of
0.9997185 evaluated against a test set of 100 random points
also chosen from the interval [-1, 1]. Mathematically, it cor-
responds to the following function (the contribution of each
sub-ET is indicated in square brackets):

which is a very good approximation to the target function
(3.3) as the high value of R-square indicates.

It is worth noticing that the algorithm does in fact inte-
grate constants in the evolved solutions, but the constants
are very different from the expected ones. Indeed, GEP (and
I believe, all genetic algorithms with tree representations)
can find the expected constants with a precision to the third
or fourth decimal place when the target functions are simple
polynomial functions with rational coefficients and/or when
it is possible to guess pretty accurately the function set, oth-
erwise a very creative solution would be found.

To predict sunspots using random numerical constants
F = {+, -, *, /}

4
 and T = {a, b, c, d, e, f, g, h, i, j, ?}. The set

of rational random constants R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
and “?” ranged over the interval [-1, 1]. The parameters used
per run are shown in the fifth column of Table 2. The best

solution, found in run 92 after 4759 generations, is shown
below (the sub-ETs are linked by addition):

Gene 0:
/*++j+hjjijg?cfda894833994
A

0
 = {0.977, 0.421, 0.226, 0.325, 0.933,

 0.204, 0.594, 0.8, 0.212, 0.395}

Gene 1:
/++b+*+ag?c?eiejb795620470
A

1
 = {0.72, 0.447, 0.266, 0.511, 0.304,

 0.247, 0.159, 0.847, 0.204, 0.995}

Gene 2:
/*++jj*+jii??f?ig454696802
A

2
 = {0.52, 0.595, 0.714, 0.982, 0.987,

 0.916, 0.153, 0.779, 0.987, 0.672} (3.5)

It has a fitness of 86603.2 and an R-square of 0.833714 evalu-
ated over the set of 90 fitness cases. Mathematically, it cor-
responds to the following function:

3.2.3. Second approach: Creation of numerical constants
from scratch

To solve the sequence induction problem without the facil-
ity to manipulate numerical constants, the function set was
exactly the same as in the experiment with random constants.
The terminal set consisted obviously of the independent vari-
able alone.

As shown in the second column of Table 2, the probabil-
ity of success using this approach is 81%, considerably higher
than the 16% obtained using the facility to manipulate ran-
dom constants. In this experiment, the first perfect solution
was found in generation 44 of run 0 (the sub-ETs are linked
by addition):

0123456789012
+aa+a-aaaaaaa
+//*aaaaaaa
*+++**aaaaaaa
*+***+aaaaaaa
+//++-aaaaaaa
+*---*aaaaaaa
*a-aa-aaaaaaa

which corresponds to the target sequence (3.2). Note that
the algorithm creates all necessary constants from scratch
by performing simple mathematical operations.

To find the “V” shaped function without using random
constants, the function set is exactly the same as in the first
approach. With this collection of functions, most of which

ji

jj

ec

gba

jih

j
y

+
++

++
+++

++
=

2

22 903.1

847.0995.0

2

()[] ()[] []
[] []aa

aa

eea

ay

+++−

+++=
981.03

929.027278.1sin2

45714.280112.277631.0

101099782.0ln

8

extraneous, the algorithm is equipped with different tools for
evolving highly accurate models without using numerical con-
stants. The parameters used per run are shown in the fourth
column of Table 2. In this experiment of 100 identical runs,
the best solution was found in generation 4679 of run 10:

0123456789012
+L~*S+aaaaaaa
++a+*Saaaaaaa
+CEC*+aaaaaaa
ESaaSaaaaaaaa
++EE/*aaaaaaa (3.6)

It has a fitness of 1990.023 and an R-square of 0.9999313
evaluated over the set of 20 fitness cases and an R-square of
0.9998606 evaluated against the same test set used in the
first approach, and thus is better than the model (3.4) evolved
with the facility for the manipulation of random constants.
More formally, the model (3.6) is expressed by the equation
(the contribution of each gene is shown in square brackets):

To predict sunspots without using random numerical con-
stants, the function set is exactly the same as in the first ap-
proach. The parameters used per run are shown in the sixth
column of Table 2. In this experiment of 100 identical runs,
the best solution was found in generation 2273 of run 57:

01234567890123456
j+a/+a+*gaafchdci
/++-+be+ijdjjaiid
/++*ci+-jiabiddhf (3.7)

It has a fitness of 89176.61 and an R-square of 0.882831
evaluated over the set of 90 fitness cases, and thus is better
than the model (3.5) evolved with the facility for the ma-
nipulation of random constants. More formally, the model
(3.7) is expressed by the equation:

It is instructive to compare the results obtained in both
approaches. In all the experiments the explicit use of ran-
dom constants resulted in a worse performance. In the se-
quence induction problem, success rates of 81% against 16%
were obtained; in the “V” function problem average best-of-
run fitnesses of 1931.84 versus 1914.80 and average best-
of-run R-squares of 0.995340 versus 0.957255 were ob-
tained; and in the sunspots prediction problem average best-
of-run fitnesses of 89033.29 versus 86215.27 and average
best-of-run R-squares of 0.811863 versus 0.713365 were
obtained (see Table 2). Thus, in real-world applications where
complex realities are modeled, of which nothing is known

concerning neither the type nor the range of the numerical
constants, and where most of the times it is impossible to
guess the exact function set, it is more appropriate to let the
system model the reality on its own without explicitly using
random constants. Not only the results will be better but also
the complexity of the system will be much smaller.

4. Conclusions

Gene expression programming is the most recent develop-
ment on artificial evolutionary systems and one that brings
about a considerable increase in performance due to the cross-
ing of the phenotype threshold. In practical terms, the cross-
ing of the phenotype threshold allows the unconstrained ex-
ploration of the search space because all modifications are
made on the genome and because all modifications always
result in valid phenotypes or programs. In addition, the geno-
type/phenotype representation of GEP not only simplifies
but also invites the creation of more complexity. The elegant
mechanism developed to deal with random constants is a
good example of this.

In this work, the question of constant creation in sym-
bolic regression was discussed comparing two different ap-
proaches to solve this problem: one with the explicit use of
numerical constants, and another without them. The results
presented here suggest that the latter is more efficient, not
only in terms of the accuracy of the best evolved models and
overall performance, but also because the search space is
much smaller, reducing greatly the complexity of the system
and, consequently, the precious CPU time.

Finally, the results presented in this work also suggest
that, apparently, the term “constant” is just another word for
mathematical expression and that evolutionary algorithms
are particularly good at finding these expressions because
the search is totally unbiased.

Bibliography

Banzhaf, W., Genotype-Phenotype-Mapping and Neutral
Variation – A Case Study in Genetic Programming. In Y.
Davidor, H.-P. Schwefel, and R. Männer, eds., Parallel Prob-
lem Solving from Nature III, Lecture Notes in Computer
Science, 866: 322-332, Springer-Verlag, 1994.

Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone,
Genetic Programming: An Introduction: On the Automatic
Evolution of Computer Programs and its Applications.
Morgan Kaufmann, 1998.

Cramer, N. L., A Representation for the Adaptive Genera-
tion of Simple Sequential Programs. In J. J. Grefenstette,
ed., Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Erlbaum, 1985.

Ferreira, C., 2001. Gene Expression Programming: A New
Adaptive Algorithm for Solving Problems. Complex Systems,
13 (2): 87-129.

ia

ijbjd

eb

jid
jy

2

3

+
−++

+
+−+=

()[] []
()()[] [] []22

12coscos

sin2102ln
sin

2sin2

aaaa

a

eeeea

aaaay

+++++

+++++=

9

Holland, J. H., Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol, and Artificial Intelligence. University of Michigan Press,
1975 (second edition: MIT Press, 1992).

Koza, J. R., Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
MIT Press, 1992.

Mitchell, M., An Introduction to Genetic Algorithms. MIT
Press, 1996.

Weigend, A.S., B. A. Huberman, and D. E. Rumelhart, Pre-
dicting Sunspots and Exchange Rates with Connectionist
Networks. In S. Eubank and M. Casdagli, eds., Nonlinear
Modeling and Forecasting, pages 395-432, Redwood City,
CA, Addison-Wesley, 1992.

