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Abstract. An artificial neural network with all its elements is a rather com-
plex structure, not easily constructed and/or trained to perform a particular 
task. Consequently, several researchers used genetic algorithms to evolve 
partial aspects of neural networks, such as the weights, the thresholds, and 
the network architecture. Indeed, over the last decade many systems have 
been developed that perform total network induction. In this work it is 
shown how the chromosomes of Gene Expression Programming can be 
modified so that a complete neural network, including the architecture, the 
weights and thresholds, could be totally encoded in a linear chromosome. It 
is also shown how this chromosomal organization allows the train-
ing/adaptation of the network using the evolutionary mechanisms of selec-
tion and modification, thus providing an approach to the automatic design 
of neural networks. The workings and performance of this new algorithm 
are tested on the 6-multiplexer and on the classical exclusive-or problems. 

Keywords: neural networks, gene expression programming, evolvable neu-
ral networks 

Introduction 

An artificial neural network is a computational device that consists of 
many simple connected units (neurons) that work in parallel. The connec-
tions between the units or nodes are weighted usually by real-valued 
weights. Weights are the primary means of learning in neural networks, 
and a learning algorithm is used to adjust the weights (e.g., Anderson 
1995). 

More specifically, a neural network has three different classes of units: 
input, hidden, and output units. An activation pattern is presented on its 
input units and spreads in a forward direction from the input units through 
one or more layers of hidden units to the output units. The activation com-
ing into a unit from other units is multiplied by the weights on the links 
over which it spreads. All incoming activation is then added together and 
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the unit becomes activated only if the incoming result is above the unit’s 
threshold. 

In summary, the basic elements of a neural network are the units, the 
connections between units, the weights, and the thresholds. And these are 
the elements that must be encoded in a linear chromosome so that popula-
tions of such structures can adapt in a particular selection environment in 
order to evolve solutions to different problems. 

Over the last decade many systems have been developed that evolve 
both the topology and the parametric values of a neural network (Angeline 
et al. 1993, Braun and Weisbrod 1993, Dasgupta and McGregor 1992, 
Gruau et al. 1996, Koza and Rice 1991, Lee and Kim 1996, Mandischer 
1993, Maniezzo 1994, Opitz and Shavlik 1997, Pujol and Poli 1998, Yao 
and Liu 1996, Zhang and Muhlenbein 1993). The present work introduces 
a new algorithm, GEP-NN, based on Gene Expression Programming 
(GEP) (Ferreira 2001) that performs total network induction using linear 
chromosomes of fixed length (the genotype) that map into complex neural 
networks of different sizes and shapes (the phenotype). The problems cho-
sen to show the workings of this new algorithm include two problems of 
logic synthesis: the exclusive-or and the 6-multiplexer. 

Genes with Multiple Domains for Designing NNs 

The total induction of neural networks (NNs) using GEP, requires further 
modification of the structural organization developed to manipulate nu-
merical constants (Ferreira 2001, 2003). The network architecture is en-
coded in the familiar structure of head and tail. The head contains special 
functions that activate the units and terminals that represent the input units. 
The tail contains obviously only terminals. Besides the head and the tail, 
these genes (neural net genes or NN-genes) contain two additional do-
mains, Dw and Dt, encoding, respectively, the weights and the thresholds. 
Structurally, the Dw comes after the tail and has a length dw equal to the 
head length h multiplied by maximum arity n, and Dt has a length dt equal 
to h. Both domains are composed of symbols representing the weights or 
thresholds of the neural net. 

For each NN-gene, the weights and thresholds are created at the begin-
ning of each run, but their circulation is guaranteed by the usual genetic 
operators of mutation, transposition, and recombination. Nonetheless, a 
special mutation operator was created that allows the permanent introduc-
tion of variation in the set of weights and thresholds. 
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It is worth emphasizing that the basic genetic operators like mutation or 
transposition are not affected by Dw and Dt as long as the boundaries of 
each region are maintained and the alphabets of each domain are not mixed 
up. 

Consider the conventionally represented neural network with two input 
units (i1 and i2), two hidden units (h1 and h2), and one output unit (o1) (for 
simplicity, the thresholds are all equal to 1 and are omitted): 

o1
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h2
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It can also be represented as a tree: 

D

1 3 4

5 6

2
D D

b ba a  
where a and b represent, respectively, the inputs i1 and i2 to the network 
and “D” represents a function with connectivity two. This function multi-
plies the value of each argument by its respective weight and adds all the 
incoming activation in order to determine the forwarded output. This out-
put (0 or 1) depends on the threshold which, for simplicity, was set to 1. 

We could linearize the above NN-tree as follows: 
 

0123456789012 
DDDabab654321 

 
which consists of an NN-gene with the familiar head and tail domains, plus 
an additional domain Dw for encoding the weights. The values of each 
weight are kept in an array and are retrieved as necessary. For simplicity, 
the number represented by the numeral in Dw indicates the order in the 
array. 

Let us now analyze a simple neural network encoding a well-known 
function, the exclusive-or. Consider, for instance, the chromosome below 
with h = 3 and containing a domain encoding the weights: 
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0123456789012 
DDDabab393257 

 

Its translation gives: 

D
3

7 5 2 3

9

D D

b ba a  
For the set of weights: 
 

W = {-1.978, 0.514, -0.465, 1.22, -1.686, -1.797, 0.197, 1.606, 0, 1.753}, 
 

the neural network above gives: 

                                

D
1.22

1.22
-0.

46
5-1.7971.606

1.753

D D

b ba a                                (2.1) 

which is a perfect solution to the exclusive-or problem. 

Special Genetic Operators 

The evolution of such complex entities composed of different domains and 
different alphabets requires a special set of genetic operators so that each 
domain remains intact. The operators of the basic gene expression algo-
rithm (Ferreira 2001) are easily transposed to neural-net encoding chromo-
somes, and all of them can be used as long as the boundaries of each do-
main are maintained and alphabets are not mixed up. Mutation was ex-
tended to all the domains and continues to be the most important genetic 
operator. IS and RIS transposition were also implemented in GEP-nets and 
their action is obviously restricted to heads and tails. However, a special 
insertion operator was created that operates within Dw and Dt, ensuring 
the efficient circulation of weights and thresholds in the population. An-
other special operator, weights and thresholds’ mutation, was also created 
in order to directly introduce variation in the set of available weights and 
thresholds. 
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The extension of recombination and gene transposition to GEP-nets is 
straightforward, as their actions never result in mixed domains or alpha-
bets. However, for them to work efficiently (i.e., allow an efficient learn-
ing), we must be careful in determining which weights and/or thresholds 
go to which region after the splitting of the chromosomes, otherwise the 
system is incapable of evolving efficiently. In the case of gene recombina-
tion and gene transposition, keeping track of a gene’s weights and thresh-
olds is no difficult task, and these operators work very well in GEP-nets. 
But in one-point and two-point recombination where chromosomes can be 
split anywhere, it is impossible to keep track of the weights and thresholds. 
In fact, if applied straightforwardly, these operators would produce such 
evolutionary monsters that they would be of little use in multigenic chro-
mosomes. Therefore, for multigenic systems, a special intragenic two-
point recombination was created so that the recombination is restricted to a 
particular gene. 

Domain-specific Transposition 

Domain-specific transposition is restricted to the NN-specific domains, 
Dw and Dt. Its mechanism is, however, similar to IS transposition (Ferreira 
2001). This operator randomly chooses the chromosome, the gene with its 
respective Dw plus Dt (if we use the same symbols to represent the 
weights and the thresholds, we can treat Dw and Dt as one big domain), 
the first position of the transposon, the transposon length, and the target 
site (also chosen within Dw plus Dt). 

Consider the chromosome below with h = 4 (Dw and Dt are shown in 
different shades): 
 

0123456789012345678901234567890123456  
DTQaababaabbaabba05717457362846682867          (3.1) 

 

where “T” represents a function of three arguments and “Q” represents a 
function of four arguments. Suppose that the sequence “46682” was cho-
sen as a transposon and that the insertion site was bond 4 in Dw (between 
positions 20 and 21). Then the following chromosome is obtained: 
 

0123456789012345678901234567890123456 
DTQaababaabbaabba05714668274573628466          (3.2) 

 

Note that the transposon might be any sequence in Dw or Dt, or even be 
part Dw and part Dt like in the example above. Note also that the insertion 
site might be anywhere in Dw or Dt as the symbols used to represent the 
weights and the thresholds are the same. Remember, however, that the val-
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ues they represent are different for they are kept in different arrays. Sup-
pose that the arrays below represent the weights and the thresholds of 
chromosome (3.1) above: 
 

W = {-1.64, -1.834, -0.295, 1.205, -0.807, 0.856, 1.702, -1.026, -0.417, -1.061} 
T = {-1.14, 1.177, -1.179, -0.74, 0.393, 1.135, -0.625, 1.643, -0.029, -1.639} 

 
Although the new chromosome (3.2) obtained after transposition has the 
same topology and uses exactly the same arrays of weights and thresholds 
for its expression, a different neural network is encoded in this chromo-
some (Figure 1). Indeed, with domain-specific transposition the weights 
and thresholds are moved around and new combinations are tested. 

Intragenic Two-point Recombination 

Intragenic two-point recombination was created in order to allow the modi-
fication of a particular gene without interfering with the other sub-NNs 
encoded in other genes. The mechanism of this kind of crossover is exactly 
the same as in two-point recombination, with the difference that the cross-
over points are chosen within a particular gene (see Figure 2). 

Consider the following parent chromosomes composed of two genes, 
each with a weights’ domain (Wi,j represents the weights of gene j in 
chromosome i): 
 

W0,1 = {-0.78, -0.521, -1.224, 1.891, 0.554, 1.237, -0.444, 0.472, 1.012, 0.679} 
W0,2 = {-1.553, 1.425, -1.606, -0.487, 1.255, -0.253, -1.91, 1.427, -0.103, -1.625} 

 
0123456789012345601234567890123456 
TTababaab14393255QDbabbabb96369304-[0] 
Qaabbbabb97872192QDbabbaaa81327963-[1] 

 
W1,1 = {-0.148, 1.83, -0.503, -1.786, 0.313, -0.302, 0.768, -0.947, 1.487, 0.075} 
W1,2 = {-0.256, -0.026, 1.874, 1.488, -0.8, -0.804, 0.039, -0.957, 0.462, 1.677} 

 
Suppose that the first gene was chosen to recombine and point 1 (between 
positions 0 and 1) and point 12 (between positions 11 and 12) were chosen 
as recombination points. Then the following offspring is formed: 
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01234567890123456 3456
DTQaababaabbaabba 867-[m]

7890123456789012
05717457362846682

W  = {-1.64, -1.834, -0.295, 1.205, -0.807, 0.856, 1.702, -1.026, -0.417, -1.061}
T  = {-1.14, 1.177, -1.179, -0.74, 0.393, 1.135, -0.625, 1.643, -0.029, -1.639} 

m

m

D

-0.
41

7

-0
.4

17-0.807

1.
70

2
1.643 -0.625

-0.029

1.702

1.702

1.205 -1.026

-0.295

T Q

ba aa a ab

01234567890123456 3456
DTQaababaabbaabba 8466-[d]

7890123456789012
0571 745736246682

W  = {-1.64, -1.834, -0.295, 1.205, -0.807, 0.856, 1.702, -1.026, -0.417, -1.061}
T  = {-1.14, 1.177, -1.179, -0.74, 0.393, 1.135, -0.625, 1.643, -0.029, -1.639} 

d

d

b.

D

-0.
29

5

0.
85
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-1.026
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70

2

-0.625 -0.625

0.393
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-0.295 -0.417

-0.807

T Q

ba aa a ab  

Fig. 1. Testing new combinations of existing weights and thresholds by domain-
specific transposition. a) The mother neural network. b) The daughter neural net-
work created by domain-specific transposition. Note that the network architecture 
is the same for both mother and daughter and that Wm = Wd and Tm = Td. How-
ever, mother and daughter are different because different combinations of weights 
and thresholds are expressed in these individuals. 

 
0123456789012345601234567890123456 
Taabbbabb97893255QDbabbabb96369304-[0] 
QTababaab14372192QDbabbaaa81327963-[1] 

 
with the weights encoded in exactly the same arrays as the parents. How-
ever, due to recombination, the weights expressed in the parents are differ-
ent from those expressed in the offspring (compare their expressions in 
Figure 2). 
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a.

b.

0123456789012345601234567890123456
-[0]

Qaabbbabb97872192QDbabbaaa81327963-[1]
TTababaab14393255QDbabbabb96369304

0123456789012345601234567890123456
aabbbabb978 -[0]
Q 72192QDbabbaaa81327963-[1]
T 93255QDbabbabb96369304

Tababaab143

W  = {-0.78, -0.521, -1.224, 1.891, 0.554, 1.237, -0.444, 0.472, 1.012, 0.679} 
W  = {-1.553, 1.425, -1.606, -0.487, 1.255, -0.253, -1.91, 1.427, -0.103, -1.625} 

W  = {-0.148, 1.83, -0.503, -1.786, 0.313, -0.302, 0.768, -0.947, 1.487, 0.075}  
W  = {-0.256, -0.026, 1.874, 1.488, -0.8, -0.804, 0.039, -0.957, 0.462, 1.677} 
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Fig. 2. Intragenic two-point recombination in multigenic chromosomes encoding 
neural networks. a) An event of intragenic two-point recombination between two 
parent chromosomes resulting in two new daughter chromosomes. Note that the 
set of weights is not modified by recombination. b) The sub-NNs codified by the 
parent chromosomes. c) The sub-NNs codified by the daughter chromosomes. 
Note that the sub-NNs encoded in the second gene are not modified. “L” repre-
sents a generic linking function. 
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It is worth emphasizing that this gene-restricted two-point recombina-
tion allows a greater control of the recombination effects and, conse-
quently, permits a finer tuning of evolution. If we were to use one-point 
and two-point recombination as used in the basic gene expression algo-
rithm, i.e., disrupting chromosomes anywhere, the fine adjustment of the 
weights would be an almost impossible task. Restricting two-point recom-
bination to only one gene, however, ensures that only this gene is modified 
and, consequently, the weights and thresholds of the remaining genes are 
kept in place. 

Remember, however, that intragenic two-point recombination is not the 
only source of recombination in multigenic neural nets: gene recombina-
tion is fully operational in these systems and it can be combined with gene 
transposition to propel evolution further. And in unigenic systems, the 
standard one-point and two-point recombination are also fully operational 
as only one gene is involved. 
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Fig. 3. Continued. 
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Direct Mutation of Weights and Thresholds 

In the previous sub-sections it was shown that all genetic operators con-
tribute directly or indirectly to move the weights and thresholds around. 
And, in fact, this constant shuffling of weights and thresholds is more than 
sufficient to allow an efficient evolution of GEP-nets as long as an appro-
priate number of weights and thresholds is randomly created at the begin-
ning of each run. However, special mutation operators that replace the 
value of a particular weight or threshold by another can also be easily im-
plemented (see Figure 3). 

This operator randomly selects particular targets in the arrays in which 
the weights or thresholds are kept, and randomly generates a new real-
valued number. Consider for instance the array: 
 

Wi,j = {-0.433, -1.823, 1.255, 0.028, -1.755, -0.036, -0.128, -1.163, 1.806, 0.083} 
 
encoding the weights of gene j on chromosome i. Suppose a mutation oc-
curred at position 7, changing the weight -1.163 occupying that position 
into -0.494, obtaining: 
 

Wi,j = {-0.433, -1.823, 1.255, 0.028, -1.755, -0.036, -0.128, -0.494, 1.806, 0.083} 
 

The consequences of this kind of mutation are very diverse: they might 
be neutral in effect (for instance, when the gene itself is neutral or when 
the weight/threshold has no expression on the sub-neural net) or they 
might have manifold effects (for instance, if the weight/threshold modified 
happened to be used more than once in the expression of the sub-NN as 
shown in Figure 3). 

Interestingly, this kind of mutation seems to have a very limited impor-
tance and better results are obtained when this operator is switched off. 
Indeed, the direct mutation of numerical constants in function finding 
problems produces identical results (Ferreira 2003). Therefore, we can 
conclude that a well dimensioned initial diversity of constants, be they 
numerical constants of a mathematical expression or weights/thresholds of 
a neural net, is more than sufficient to allow their evolutionary tuning. In 
all the problems presented in this work, a set of 10 weights W = {0, 1, 2, 3, 
4, 5, 6, 7, 8, 9} was used. 
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012345678901234567890123456789012
TDQDbaabababaaaaa7986582527723251-[m]

W  = { , -1.934, , 0.013, 1.905, 1.167, 1.801, -1.719, 1.412, 0.434} m -0.202 -0.17

W  = { , -1.934, , 0.013, 1.905, 1.167, 1.801, -1.719, 1.412, 0.434}d 1.49 1.064

012345678901234567890123456789012
TDQDbaabababaaaaa7986582527723251-[d]
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Fig. 3. Illustration of direct mutation of weights. a) The mother and daughter 
chromosomes with their respective weights. In this case, weights at positions 0 
and 2 were mutated. Note that the mother and daughter chromosomes are the 
same. b) The mother and daughter neural nets encoded in the chromosomes. Note 
that the point mutation at position 2 (-0.17) has manifold effects as this weight 
appears four times in the neural network. Note also that the mutation at position 0 
is an example of a neutral mutation as it has no expression on the neural net (in-
deed, mutations at positions 4, 6, and 9 would also be neutral). 
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Solving Problems with NNs Designed by GEP 

The problems chosen to illustrate the evolution of linearly encoded neural 
networks are two well-known problems of logic synthesis. The first, the 
exclusive-or problem, was chosen both for its historical importance in the 
neural network field and for its simplicity, allowing an easy understanding 
of the evolved neural networks. The second, the 6-bit multiplexer, is a 
rather complex problem and can be useful for evaluating the efficiency of 
this new algorithm. 

Neural Network for the Exclusive-or Problem 

The XOR is a simple Boolean function of two activities and, therefore, can 
be easily solved using linearly encoded neural networks. Its rule table is 
shown in Table 1. 

Table 1. Lookup table for the exclusive-or function. 

a
0
0
1
1

0
1
0
1

0
1
1
0

b o

 
 

The functions used to solve this problem have connectivities 2, 3, and 4, 
and are represented, respectively, by “D”, “T”, and “Q”, thus the function 
set F = {D, T, Q}; the terminal set T = {a, b}; and the set of weights W = 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} with values randomly chosen from the interval 
[-2, 2]. For the experiment summarized in the first column of Table 2, an h 
= 4 was chosen and, therefore, hundreds of different correct solutions to 
the XOR function were found. Most of them are more complicated than 
the conventional solution (2.1) shown above which uses seven nodes; oth-
ers have the same degree of complexity evaluated in terms of total nodes; 
but, as will next be shown, other solutions are surprisingly more parsimo-
nious than the conventional solution mentioned above. 

The first solution found in run 0 of the experiment summarized in the 
first column of Table 2 is shown below: 
 

012345678901234567890123456789012 
TQaTaaababbbabaaa6085977238275036 
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W = {1.175, 0.315, -0.738, 1.694, -1.215, 1.956, -0.342, 1.088, -1.694, 1.288} 
 
Its expression is shown in Figure 4. It is a rather complicated solution to 
the XOR function, but remember that evolutionary algorithms thrive in 
slightly redundant architectures (Ferreira 2002) and, as shown in Table 2, 
the success rate for this problem using this non-compact chromosomal or-
ganization is higher (77%) than the obtained with more compact organiza-
tions with h = 2 (30%). 

 
012345678901234567890123456789012
TQaTaaababbbabaaa6085977238275036

W = {1.175, 0.315, -0.738, 1.694, -1.215, 1.956, -0.342, 1.088, -1.694, 1.288} 

a.

b.

a

T

a a

Q

a b

-0.342

1.
69

4

1.175
1.956

-0
.7

38

a bb

T

1.088
-0

.7
38

-1.694

1.694 1.088

 
Fig. 4. A perfect, slightly complicated solution to the exclusive-or problem 
evolved with GEP-NNs. a) Its chromosome and respective weights. b) The fully 
expressed neural network encoded in the chromosome. 

 
However, GEP can be useful to search for parsimonious solutions, and a 

very interesting parsimonious solution to the XOR function was found in 
another experiment. The parameters used per run in this experiment are 
summarized on the second column of Table 2. It is worth emphasizing that 
the compact organization with h = 2 was chosen in order to search for 
more parsimonious solutions than the canonical solution to the XOR func-
tion. One such solution is shown below: 
 

01234567890123456 
TDbabaabb88399837 

 
W = {0.713, -0.774, -0.221, 0.773, -0.789, 1.792, -1.77, 0.443, -1.924, 1.161} 

 
which is a perfect, extremely parsimonious solution to the XOR problem. 
Its full expression is shown in Figure 5. Indeed, several perfect solutions 
with this kind of structure were found in this experiment. 
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Table 2. Parameters for the exclusive-or problem. 

Redundant System Compact System
Number of runs 100 100
Number of generations 50 50
Population size 30 30
Number of fitness cases 4 4
Function set D T Q D T Q
Terminal set a b a b
Weights array length 10 10
Weights range [-2, 2] [-2, 2]
Head length 4 2
Number of genes 1 1
Chromosome length 33 17
Mutation rate 0.061 0.118
One-point recombination rate 0.7 0.7
IS transposition rate 0.1 --
IS elements length 1 --
RIS transposition rate 0.1 --
RIS elements length 1 --
Dw-specific transposition rate 0.1 0.1
Dw-specific IS elements length 2,3,5 2,3,5
Success rate 77% 30%  
 

 
01234567890123456
TDbabaabb88399837

W = {0.713, -0.774, -0.221, 0.773, -0.789, 1.792, -1.77, 0.443, -1.924, 1.161}

a.

b.

a

b

T

D

a

b

-1.924

0.4
43

0.773

1.
16

1 1.161

 
Fig. 5. A perfect, extremely parsimonious solution to the exclusive-or problem 
discovered with GEP designed neural networks. a) Its chromosome and corre-
sponding array of weights. b) The fully expressed neural network encoded in the 
chromosome. 
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Neural Network for the 6-Multiplexer 

The 6-bit multiplexer is a complex Boolean function of six activities. Its 
rule table is shown in Table 3. 

Table 3. Lookup table for the 6-multiplexer. The output bits are given in 
lexicographic order starting with 000000 and finishing with 111111. 

00000000 11111111 00001111 00001111
00110011 00110011 01010101 01010101

 
 

For this problem, and in order to simplify the analysis, a rather compact 
chromosomal organization was chosen and the “Q” function was not in-
cluded in the function set. Thus, F = {3U, 3D, 3T}, where “U” represents a 
function with connectivity one; T = {a, b, c, d, e, f}, representing the six 
arguments to the 6-multiplexer function; and W = {0, 1, 2, 3, 4, 5, 6, 7, 8, 
9}, each taking values from the interval [-2, 2]. 

For the experiment summarized in the first column of Table 4, single-
gene chromosomes were chosen so that the simulation of the 6-multiplexer 
function, a four modular function, went totally unbiased. One of the most 
parsimonious solutions designed by GEP-nets is shown in Figure 6. 

Obviously, we could explore the multigenic nature of GEP chromo-
somes and evolve multigenic neural networks. The solutions found are, 
however, structurally more constrained as we have to choose some kind of 
linking function (Ferreira 2001) to link the sub-neural nets encoded by 
each gene. For this problem, the Boolean function OR was chosen to link 
the sub-NNs. (If the mixing of OR with “U”, “D”, and “T” functions is 
confusing, think of OR as a function with connectivity two with a thresh-
old and weights all equal to 1, and you have a neural net for the OR func-
tion.) 

In the experiment summarized in the second column of Table 4, four 
genes posttranslationally linked by OR were used. The first solution found 
in this experiment is shown in Figure 7. Note that some weights in genes 1 
and 2 have identical values, and that the same happens for genes 3 and 4. 
This most probably means that these genes share a common ancestor. 
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Table 4. Parameters for the 6-multiplexer problem. 

Unigenic System Multigenic System
Number of runs 100 100
Number of generations 2000 2000
Population size 50 50
Number of fitness cases 64 (Table 3) 64 (Table 3)
Function set 3U 3D 3T 3U 3D 3T
Terminal set a b c d e f a b c d e f
Linking function -- O
Weights array length 10 10
Weights range [-2, 2] [-2, 2]
Head length 17 5
Number of genes 1 4
Chromosome length 103 124
Mutation rate 0.044 0.044
Intragenic two-point recombination rate 0.6 0.6
Gene recombination rate -- 0.1
Gene transposition rate -- 0.1
IS transposition rate 0.1 0.1
IS elements length 1,2,3 1,2,3
RIS transposition rate 0.1 0.1
RIS elements length 1,2,3 1,2,3
Weights mutation rate 0.002 0.002
Dw-specific transposition rate 0.1 0.1
Dw-specific IS elements length 2,3,5 2,3,5
Success rate 4% 6%  
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   ...709761631479459597193997465381760511137453583952159
W = {0.241, 1.432, 1.705, -1.95, 1.19, 1.344, 0.925, -0.163, -1.531, 1.423}  
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Fig. 6. A perfect solution to the 6-multiplexer function discovered with GEP-nets. 
a) Its chromosome and corresponding array of weights. b) The fully expressed 
neural network encoded in the chromosome. 
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0123456789012345678901234567890
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TecTDdfafabdddfa487674791701403
TDcbTbadddfceacc501702156029560-[2]
TfTTUbadbcdffdce593993321226318
TDTbaceaaeeacacd072636270049968

W  = {1.126, 0.042, 1.588, -0.03, -1.91, 1.83, -0.412, 0.607, -0.294, -0.659} 
W  = {-1.961, 1.161, 1.588, -0.03, -1.91, 1.762, -0.412, -0.121, -0.294, -0.659} 
W  = {1.558, -0.69, 0.921, 0.134, 0.468, -1.534, 0.966, 1.399, 0.023, 0.915} 
W  = {1.558, 0.767, 0.076, 0.071, 0.468, -1.534, 1.387, -1.857, -1.88, 0.331}
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Fig. 7. A perfect solution to the 6-multiplexer problem encoded in a four-genic 
chromosome. a) Its chromosome with each gene shown separately. W1-W4 are the 
arrays containing the weights of each gene. b) The sub-neural networks codified 
by each gene. In this perfect solution, the sub-NNs are linked by OR. 
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Conclusions 

The new algorithm presented in this work allows the complete induction of 
neural networks encoded in linear chromosomes of fixed length (the geno-
type) which, nonetheless, allow the evolution of neural networks of differ-
ent sizes and shapes (the phenotype). Both the chromosomal organization 
and the genetic operators especially developed to evolve neural networks 
allow an unconstrained search throughout the solution space as any modi-
fication made in the genotype always results in valid phenotypes. Further-
more, as shown for the 6-multiplexer problem presented in this work, the 
multigenic nature of GEP-nets can be further explored to evolve complex 
neural networks with multiple outputs. 
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